CETIFICATION

SDG No:

FA33668

Laboratory:

Accutest, Florida

Site:

BMS, Building 5 Area, PR

Matrix:

Groundwater/Soil

Humacao, PR

SUMMARY:

Groundwater and soil samples (Table 1) were collected on the BMSMC facility – Building 5 Area. The BMSMC facility is located in Humacao, PR. Samples were taken May 03-04, 2016 and were analyzed in Accutest Laboratory of Orlando, Florida that reported the data under SDG No.: FA33668. Results were validated using the latest validation guidelines (July, 2015) of the EPA Hazardous Waste Support Section. The analyses performed are shown in Table 1. Individual data review worksheets are enclosed for each target analyte group. The data sample organic data samples summary form shows for analytes results that were qualified.

In summary the results are valid and can be used for decision taking purposes.

Table 1. Samples analyzed and analysis performed

SAMPLE ID	SAMPLE DESCRIPTION	MATRIX	ANALYSIS PERFORMED
FA33668-1	RA-16 GWD	Groundwater	VOCs TCL List
FA33668-2	EB 030316D	AQ- Equipment Blank	VOCs TCL List
FA33668-3	S-42S	Groundwater	VOCs TCL List
FA33668-4	RA-11 GWS	Groundwater	VOCs TCL List
FA33668-5	BPEB-12	AQ- Equipment Blank	VOCs TCL List
FA33668-6	RA-11 (10-11)	Soil	VOCs TCL List
FA33668-7	S-43S	Groundwater	VOCs TCL List
FA33668-8	RA-10 (5.5-6.5)	Soil	VOCs TCL List
FA33668-9	TB 050416	AQ- Trip Blank water	VOCs TCL List

Reviewer Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

May 23, 2016

Report of Analysis

By

DP

Page 1 of 2

Client Sample ID: RA-16 GWD

Lab Sample ID: FA33668-1

AQ - Ground Water

DF

1

Date Sampled: 05/03/16 Date Received: 05/05/16

Matrix: Method:

SW846 8260C

Percent Solids: n/a

Q

Project:

BMSMC, Building 5 Area, Humacao, PR

File ID Run #1 J0976339.D **Analyzed** 05/06/16 Prep Date Pre

Prep Batch Analytical Batch n/a VJ5288

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units
67-64-1	Acetone	ND	25	10	ug/l
71-43-2	Benzene	ND	1.0	0.20	ug/l
100-44-7	Benzyl Chloride	ND	2.0	0.44	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.42	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l
75-25-2	Bromoform	ND	1.0	0.46	ug/l
78-93-3	2-Butanone (MEK)	ND	5.0	2.6	ug/l
75-15-0	Carbon Disulfide	ND	2.0	0.23	ug/l
56-23-5	Carbon Tetrachloride	ND	1.0	0.30	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l
75-00-3	Chloroethane	ND	2.0	0.63	ug/l
67-66-3	Chloroform	ND	1.0	0.30	ug/l
110-82-7	Cyclohexane	ND	1.0	0.26	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.26	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	0.81	ug/l
106-93-4	1,2-Dibromoethane	ND	2.0	0.33	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.27	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.24	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.39	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.26	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.28	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.22	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.31	ug/l
156-60-5	trans-1,2-Dichloroethylene a	ND	1.0	0.33	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.34	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.26	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.25	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.25	ug/l
76-13-1	Freon 113	ND	1.0	0.32	ug/l
591-78-6	2-Hexanone	ND	10	2.0	ug/l
98-82-8	Isopropylbenzene	ND	1.0	0.33	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = Indicates \ analyte \ found \ in \ associated \ method \ blank$

Method:

Project:

Report of Analysis

Client Sample ID: RA-16 GWD Lab Sample ID: FA33668-1

Matrix:

AQ - Ground Water

SW846 8260C BMSMC, Building 5 Area, Humacao, PR Date Sampled: 05/03/16 Date Received: 05/05/16

Percent Solids: n/a

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
99-87-6	p-Isopropyltoluene	ND	1.0	0.28	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	
74-83-9	Methyl Bromide	ND	2.0	0.50	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.23	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.4	ug/l	
1634-04-4	Methyl Tert Butyl Ether	0.75	1.0	0.20	ug/l	J
100-42-5	Styrene	ND	1.0	0.24	ug/l	_
75-85-4	Tert-Amyl Alcohol	ND	20	6.0	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	20	9.1	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.33	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
109-99-9	Tetrahydrofuran	ND	5.0	1.4	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.51	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.37	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.27	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	0.20	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.31	ug/l	
	m,p-Xylene	ND	2.0	0.30	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	s	

102%

98%

101%

102%

(a) Associated BS recovery outside control limits.

Dibromofluoromethane

4-Bromofluorobenzene

17060-07-0 1,2-Dichloroethane-D4

Toluene-D8

ND = Not detected

1868-53-7

2037-26-5

460-00-4

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

83-118%

79-125%

85-112%

83-118%

B Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 2

Client Sample ID: EB 050316D Lab Sample ID: FA33668-2

Matrix: Method:

Project:

AQ - Equipment Blank

SW846 8260C

BMSMC, Building 5 Area, Humacao, PR

Date Sampled: 05/03/16 Date Received: 05/05/16

Percent Solids:

File ID DF Analyzed Prep Date Prep Batch **Analytical Batch** Run #1 J0976340.D i 05/06/16 DP VJ5288 n/a n/a

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	. ug/l	
71-43-2	Benzene	ND	1.0	0.20	ug/l	
100-44-7	Benzyl Chloride	ND	2.0	0.44	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.42	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.46	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.6	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.23	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.30	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.63	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.26	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.26	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	0.81	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.33	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.27	ug/I	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.24	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.39	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.26	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.28	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.22	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.31	ug/l	
156-60-5	trans-1,2-Dichloroethylene a	ND	1.0	0.33	ug/l	/
78-87-5	1,2-Dichloropropane	ND	1.0	0.34	ug/l	I
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.26	ug/l	7
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.25	ug/l	€.
100-41-4	Ethylbenzene	ND	1.0	0.25	ug/l	\
76-13-1	Freon 113	ND	1.0	0.32	ug/l	•
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.33	ug/l	
					.,	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: EB 050316D Lab Sample ID: FA33668-2

Matrix: AQ - Equipment Blank Method:

Project:

SW846 8260C BMSMC, Building 5 Area, Humacao, PR Date Sampled: 05/03/16 Date Received: 05/05/16

Percent Solids:

VOA TCL List (SOM02.0)

	•					
CAS No.	Compound	Result	RL	MDL	Units	Q
99-87-6	p-Isopropyltoluene	ND	1.0	0.28	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/I	
74-83-9	Methyl Bromide	ND	2.0	0.50	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.23	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.4	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.24	ug/l	
75-85-4	Tert-Amyl Alcohol	ND	20	6.0	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	20	9.1	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.33	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
109-99-9	Tetrahydrofuran	ND	5.0	1.4	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.51	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.37	ug/i	
79-01-6	Trichloroethylene	ND	1.0	0.27	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	0.20	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.31	ug/l	
	m,p-Xylene	ND	2.0	0.30	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	ts	
1868-53-7	Dibromofluoromethane	103%		83-11	8%	
17060-07-0	1,2-Dichloroethane-D4	96%		79-12	25%	
2037-26-5	Toluene-D8	101%		85-11	2%	
460-00-4	4-Bromofluorobenzene	105%		83-11	8%	1

(a) Associated BS recovery outside control limits.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

DP

Page 1 of 2

Client Sample ID: S-42S

Lab Sample ID:

FA33668-3

AQ - Ground Water

Date Sampled: 05/03/16 Date Received: 05/05/16

Method:

SW846 8260C

DF

1

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, Humacao, PR

Prep Batch Analytical Batch

Run #1

File ID J0976341.D Analyzed 05/06/16 Prep Date n/a

n/a

Q

J

J

J

VJ5288

Run #2

Purge Volume

Run #1 Run #2 $5.0 \, ml$

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units
67-64-1	Acetone	ND	25	10	ug/l
71-43-2	Benzene	ND	1.0	0.20	ug/l
100-44-7	Benzyl Chloride	ND	2.0	0.44	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.42	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l
75-25-2	Bromoform	ND	1.0	0.46	ug/l
78-93-3	2-Butanone (MEK)	ND	5.0	2.6	ug/l
75-15-0	Carbon Disulfide	ND	2.0	0.23	ug/l
56-23-5	Carbon Tetrachloride	ND	1.0	0.30	ug/l
108-90-7	Chlorobenzene	0.44	1.0	0.20	ug/l
75-00-3	Chloroethane	ND	2.0	0.63	ug/l
67-66-3	Chloroform	ND	1.0	0.30	ug/l
110-82-7	Cyclohexane	0.86	1.0	0.26	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.26	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	0.81	ug/l
106-93-4	1,2-Dibromoethane	ND	2.0	0.33	ug/l
75-71-8	Dichlorodifluoromethane	0.68	2.0	0.50	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.27	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.24	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.39	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.26	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.28	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.22	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.31	ug/l
156-60-5	trans-1,2-Dichloroethylene a	ND	1.0	0.33	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.34	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.26	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.25	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.25	ug/l
76-13-1	Freon 113	8.7	1.0	0.32	ug/l
591-78-6	2-Hexanone	ND	10	2.0	ug/l
98-82-8	Isopropylbenzene	ND	1.0	0.33	ug/l

ND = Not detected

MDL = Method Detection Limit

RL - Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Report of Analysis

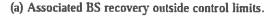
Client Sample ID: S-42S

FA33668-3 Lab Sample ID:

Matrix: Method: Project:

AQ - Ground Water

SW846 8260C


BMSMC, Building 5 Area, Humacao, PR

Date Sampled: 05/03/16 Date Received: 05/05/16

Percent Solids: n/a

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
99-87-6	p-Isopropyltoluene	ND	1.0	0.28	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	
74-83-9	Methyl Bromide	ND	2.0	0.50	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.23	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.4	ug/l	
1634-04-4	Methyl Tert Butyl Ether	1.6	1.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.24	ug/l	
75-85-4	Tert-Amyl Alcohol	ND	20	6.0	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	20	9.1	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.33	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
109-99-9	Tetrahydrofuran	ND	5.0	1.4	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.51	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.37	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.27	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	0.20	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.31	ug/l	
	m,p-Xylene	ND	2.0	0.30	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	E	
1868-53-7	Dibromofluoromethane	102%		83-11	8%	
17060-07-0	1,2-Dichloroethane-D4	98%		79-12	5%	
2037-26-5	Toluene-D8	102%		85-11	2%	
460-00-4	4-Bromofluorobenzene	107%		83-11	8%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 2

Client Sample ID: RA-11 GWS Lab Sample ID: FA33668-4

Matrix:

AQ - Ground Water SW846 8260C

DF

1

Date Sampled: Date Received: Percent Solids:

Method: Project:

BMSMC, Building 5 Area, Humacao, PR

File ID Run #1 J0976342.D

Analyzed By 05/06/16 DP Prep Date n/a

Prep Batch n/a

Analytical Batch

VJ5288

05/03/16

05/05/16

Run #2

Purge Volume

Run #1 Run #2

VOA TCL List (SOM02.0)

5.0 ml

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.20	ug/l	
100-44-7	Benzyl Chloride	ND	2.0	0.44	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.42	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.46	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.6	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.23	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.30	ug/l	
108-90-7	Chlorobenzene	0.76	1.0	0.20	ug/l	I

75-00-3 Chloroethane ND 2.0 ug/l 0.6367-66-3 Chloroform ND 1.0 0.30 ug/l 110-82-7 Cyclohexane ND 1.0 0.26 ug/l 124-48-1 Dibromochloromethane ND 1.0 0.26 ug/l 96-12-8 1,2-Dibromo-3-chloropropane ND 5.0 0.81 ug/l 106-93-4 1,2-Dibromoethane ND 2.0 0.33 ug/l 75-71-8 Dichlorodifluoromethane ND 2.0 0.50 ug/l 95-50-1 1,2-Dichlorobenzene ND 1.0 0.27 ug/l 541-73-1 1.3-Dichlorobenzene ND 0.241.0 ug/l 106-46-7 1,4-Dichlorobenzene ND 1.0 0.39ug/l 75-34-3 1.1-Dichloroethane ND 1.0 0.26 ug/l 107-06-2 1,2-Dichloroethane ND 1.0 0.28ug/l 75-35-4 1,1-Dichloroethylene ND 1.0 0.22 ug/l 156-59-2 cis-1,2-Dichloroethylene

fael Infante Méndez IC = 1888

ND = Not detected

156-60-5

78-87-5

10061-01-5

10061-02-6

100-41-4

76-13-1

98-82-8

591-78-6

MDL = Method Detection Limit

ND

ND

ND

ND

ND

ND

ND

ND

ND

1.0

1.0

1.0

1.0

1.0

1.0

1.0

10

1.0

0.31

0.33

0.34

0.26

0.25

0.25

0.32

2.0

0.33

RL = Reporting Limit

E = Indicates value exceeds calibration range

Isopropylbenzene

trans-1,2-Dichloroethylene a

1,2-Dichloropropane

Ethylbenzene

Freon 113

2-Hexanone

cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

J - Indicates an estimated value

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

B = Indicates analyte found in associated method blank

Client Sample ID: RA-11 GWS Lab Sample ID: FA33668-4

Matrix: Method:

Project:

AQ - Ground Water

SW846 8260C

BMSMC, Building 5 Area, Humacao, PR

Date Sampled: 05/03/16 Date Received: 05/05/16

Percent Solids: n/a

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
99-87-6	p-Isopropyltoluene	ND	1.0	0.28	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	
74-83-9	Methyl Bromide	ND	2.0	0.50	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.23	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.4	ug/l	
1634-04-4	Methyl Tert Butyl Ether	1.7	1.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.24	ug/l	
75-85-4	Tert-Amyl Alcohol	ND	20	6.0	ug/l	
75-65-0	Tert-Butyl Alcohol	41.1	20	9.1	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.33	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
109-99-9	Tetrahydrofuran	ND	5.0	1.4	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.51	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/i	-
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.37	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.27	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	0.20	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.31	ug/l	
	m,p-Xylene	ND	2.0	0.30	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	103%		83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	97%		79-1	25%	
2037-26-5	Toluene-D8	101%		85-1	12%	
460-00-4	4-Bromofluorobenzene	104%		83-1	18%	
						1

(a) Associated BS recovery outside control limits.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Ву

DP

C	lic	nt	Samp	le ID:	BP	EB-	I	2
-		-	- 4		-		_	_

Lab Sample ID: Matrix:

SGS Accutest

FA33668-5

AQ - Equipment Blank SW846 8260C

DF

1

Date Sampled: Date Received:

05/03/16 05/05/16

Method:

BMSMC, Building 5 Area, Humacao, PR

Percent Solids: n/a

Project:

File ID Run #1 J0976343.D

Analyzed 05/06/16

Prep Date n/a

Prep Batch n/a

Q

Analytical Batch

VJ5288

Run #2

Purge Volume

Run #1 Run #2 5.0 ml

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units
67-64-1	Acetone	ND	25	10	ug/l
71-43-2	Benzene	ND	1.0	0.20	ug/l
100-44-7	Benzyl Chloride	ND	2.0	0.44	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.42	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l
75-25-2	Bromoform	ND	1.0	0.46	ug/l
78-93-3	2-Butanone (MEK)	ND	5.0	2.6	ug/l
7 5-15-0	Carbon Disulfide	ND	2.0	0.23	ug/l
56-23-5	Carbon Tetrachloride	ND	1.0	0.30	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l
75-00-3	Chloroethane	ND	2.0	0.63	ug/l
67-66-3	Chloroform	ND	1.0	0.30	ug/l
110-82-7	Cyclohexane	ND	1.0	0.26	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.26	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	0.81	ug/l
106-93-4	1,2-Dibromoethane	ND	2.0	0.33	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.27	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.24	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.39	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.26	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.28	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.22	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.31	ug/l
156-60-5	trans-1,2-Dichloroethylene a	ND	1.0	0.33	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.34	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.26	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.25	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.25	ug/l
76-13-1	Freon 113	ND	1.0	0.32	ug/l
591-78-6	2-Hexanone	ND	10	2.0	ug/l
98-82-8	Isopropylbenzene	ND	1.0	0.33	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: BPEB-12

Lab Sample ID: Matrix:

FA33668-5

AQ - Equipment Blank

Method: Project:

SW846 8260C

BMSMC, Building 5 Area, Humacao, PR

Date Sampled: 05/03/16 Date Received: 05/05/16

Percent Solids: n/a

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
99-87-6	p-Isopropyltoluene	ND	1.0	0.28	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	
74-83-9	Methyl Bromide	ND	2.0	0.50	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.23	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.4	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.24	ug/l	
75-85-4	Tert-Amyl Alcohol	ND	20	6.0	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	20	9.1	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.33	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
109-99-9	Tetrahydrofuran	ND	5.0	1.4	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.51	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.37	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.27	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	0.20	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.31	ug/l	
	m,p-Xylene	ND	2.0	0.30	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	101%		83-11	18%	
17060-07-0	1,2-Dichloroethane-D4	98%		79-12	25%	
2037-26-5	Toluene-D8	96%		85-11	12%	
460-00-4	4-Bromofluorobenzene	104%		83-11	18%	
						1
7 S S 7 S	1.700					1 -

(a) Associated BS recovery outside control limits.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Ву

AD

Prep Date

n/a

Page 1 of 2

Client Sample ID: RA-11 (10-11)

Lab Sample ID: Matrix:

FA33668-6 SO - Soil

Date Sampled: 05/04/16 Date Received: 05/05/16

Q

Method:

SW846 8260C

Analyzed

05/05/16

Percent Solids: 75.1

Project:

BMSMC, Building 5 Area, Humacao, PR

Prep Batch **Analytical Batch** n/a VY1148

Run #1 Run #2

Run #2

Initial Weight Run #1

File ID

Y28348.D

Final Volume

5.39 g

 $5.0 \, ml$

DF

1

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units
67-64-1	Acetone	ND	62	13	ug/kg
71-43-2	Benzene	ND	6.2	1.6	ug/kg
100-44-7	Benzyl Chloride	ND	6.2	1.7	ug/kg
74-97-5	Bromochloromethane	ND	6.2	1.4	ug/kg
75-27-4	Bromodichloromethane	ND	6.2	1.2	ug/kg
75-25-2	Bromoform	ND	6.2	1.2	ug/kg
78-93-3	2-Butanone (MEK)	ND	31	11	ug/kg
75-15-0	Carbon Disulfide	ND	6.2	1.2	ug/kg
56-23-5	Carbon Tetrachloride	ND	6.2	2.2	ug/kg
108-90-7	Chlorobenzene	ND	6.2	1.2	ug/kg
75-00-3	Chloroethane	ND	6.2	2.5	ug/kg
67-66-3	Chloroform	ND	6.2	1.5	ug/kg
110-82-7	Cyclohexane	ND	6.2	1.5	ug/kg
124-48-1	Dibromochloromethane	ND	6.2	1.2	ug/kg
96-12-8	1,2-Dibromo-3-chloropropane	ND	6.2	2.7	ug/kg
106-93-4	1,2-Dibromoethane	ND	6.2	1.2	ug/kg
75-71-8	Dichlorodifluoromethane	ND	6.2	3.1	ug/kg
95-50-1	1,2-Dichlorobenzene	ND	6.2	1.2	ug/kg
541-73-1	1,3-Dichlorobenzene	ND	6.2	1.2	ug/kg
106-46-7	1,4-Dichlorobenzene	ND	6.2	1.3	ug/kg
75-34-3	1,1-Dichloroethane	ND	6.2	2.1	ug/kg
107-06-2	1,2-Dichloroethane	ND	6.2	1.2	ug/kg
75-35-4	1,1-Dichloroethylene	ND	6.2	1.2	ug/kg
156-59-2	cis-1,2-Dichloroethylene	ND	6.2	1.5	ug/kg
156-60-5	trans-1,2-Dichloroethylene	ND	6.2	1.9	ug/kg
78-87-5	1,2-Dichloropropane	ND	6.2	2.0	ug/kg
10061-01-5	cis-1,3-Dichloropropene	ND	6.2	2.3	ug/kg
10061-02-6	trans-1,3-Dichloropropene	ND	6.2	1.2	ug/kg
100-41-4	Ethylbenzene	ND	6.2	1.3	ug/kg
76-13-1	Freon 113	ND	6.2	1.4	ug/kg
591-78-6	2-Hexanone	ND	31	11	ug/kg
98-82-8	Isopropylbenzene	ND	6.2	1.7	ug/kg

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: RA-11 (10-11)

Lab Sample ID: Matrix: FA33668-6 SO - Soil

Method: Project:

SW846 8260C

BMSMC, Building 5 Area, Humacao, PR

Date Sampled: 05/04/16 Date Received: 05/05/16

Percent Solids: 75.1

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
99-87-6	p-Isopropyltoluene	ND	6.2	1.2	ug/kg	
79-20-9	Methyl Acetate	ND	31	11	ug/kg	
74-83-9	Methyl Bromide	ND	6.2	3.2	ug/kg	
74-87-3	Methyl Chloride	ND	6.2	3.0	ug/kg	
108-87-2	Methylcyclohexane	ND	6.2	1.2	ug/kg	
75-09-2	Methylene Chloride	5.0	12	4.9	ug/kg	J
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	31	13	ug/kg	_
1634-04-4	Methyl Tert Butyl Ether	ND	6.2	1.4	ug/kg	
100-42-5	Styrene	ND	6.2	1.2	ug/kg	
75-85-4	Tert-Amyl Alcohol	ND	62	17	ug/kg	
75-65-0	Tert-Butyl Alcohol	ND	62	17	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	6.2	2.7	ug/kg	
127-18-4	Tetrachloroethylene	ND	6.2	1.6	ug/kg	
109-99-9	Tetrahydrofuran	ND	12	4.5	ug/kg	
108-88-3	Toluene	ND	6.2	1.4	ug/kg	
87-61-6	1,2,3-Trichlorobenzene	ND	6.2	2.4	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	6.2	1.8	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	6.2	1.2	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	6.2	2.2	ug/kg	
79-01-6	Trichloroethylene	ND	6.2	1.4	ug/kg	
75-69-4	Trichlorofluoromethane	ND	6.2	2.3	ug/kg	
95-63-6	1,2,4-Trimethylbenzene	ND	6.2	1.2	ug/kg	
75-01-4	Vinyl Chloride	ND	6.2	2.1	ug/kg	
	m,p-Xylene	ND	12	2.2	ug/kg	
95-47-6	o-Xylene	ND	6.2	1.4	ug/kg	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	107%		75-17	24%	
17060-07-0	1,2-Dichloroethane-D4	110%		72-13	35%	
2037-26-5	Toluene-D8	100%		75-17	26%	43
460-00-4	4-Bromofluorobenzene	100%		71-13	33%	1.
						1

Report of Analysis

Вy

DP

n/a

Page 1 of 2

Client Sample ID: S-43S

Lab Sample ID:

FA33668-7

Matrix: Method: AQ - Ground Water

DF

1

SW846 8260C

Date Sampled: 05/04/16 Date Received:

05/05/16

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, Humacao, PR

Analyzed

05/06/16

Prep Date Prep Batch

Q

J

Analytical Batch n/a VJ5288

Run #1 Run #2

Purge Volume

J0976344.D

File ID

Run #1 5.0 ml

Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units
67-64-1	Acetone	ND	25	10	ug/l
71-43-2	Benzene	0.46	1.0	0.20	ug/l
100-44-7	Benzyl Chloride	ND	2.0	0.44	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.42	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l
75-25-2	Bromoform	ND	1.0	0.46	ug/l
78-93-3	2-Butanone (MEK)	ND	5.0	2.6	ug/l
75-15-0	Carbon Disulfide	ND	2.0	0.23	ug/l
56-23-5	Carbon Tetrachloride	ND	1.0	0.30	ug/l
108-90-7	Chlorobenzene	12.9	1.0	0.20	ug/l
75-00-3	Chloroethane	ND	2.0	0.63	ug/l
67-66-3	Chloroform	ND	1.0	0.30	ug/l
110-82-7	Cyclohexane	6.3	1.0	0.26	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.26	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	0.81	ug/l
106-93-4	1,2-Dibromoethane	ND	2.0	0.33	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.27	ug/I
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.24	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.39	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.26	ug/l
107-06-2	1,2-Dichloroethane	ND -	1.0	0.28	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.22	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.31	ug/l
156-60-5	trans-1,2-Dichloroethylene a	ND	1.0	0.33	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.34	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.26	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.25	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.25	ug/l
76-13-1	Freon 113	ND	1.0	0.32	ug/l
591-78-6	2-Hexanone	ND	10	2.0	ug/l
98-82-8	Isopropylbenzene	10.1	1.0	0.33	ug/i

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Report of Analysis

Client Sample ID: S-43S Lab Sample ID:

FA33668-7 AQ - Ground Water Date Sampled:

05/04/16 Date Received: 05/05/16 Percent Solids: n/a

Matrix: Method: Project:

SW846 8260C BMSMC, Building 5 Area, Humacao, PR

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
99-87-6	p-Isopropyltoluene	ND	1.0	0.28	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	
74-83-9	Methyl Bromide	ND	2.0	0.50	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.23	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.4	ug/l	
1634-04-4	Methyl Tert Butyl Ether	11.0	1.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.24	ug/l	
75-85-4	Tert-Amyl Alcohol	12.8	20	6.0	ug/l	J
75-65- 0	Tert-Butyl Alcohol	223	20	9.1	ug/l	_
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.33	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
109-99-9	Tetrahydrofuran	1.7	5.0	1.4	ug/l	J
108-88-3	Toluene	0.27	1.0	0.20	ug/l	Ī
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.51	ug/l	•
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.37	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.27	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	0.20	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.31	ug/l	
	m,p-Xylene	ND	2.0	0.30	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limi	is	
1868-53-7	Dibromofluoromethane	101%		83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	100%		79-13	25%	
2037-26-5	Toluene-D8	98%		85-13	12%	
460-00-4	4-Bromofluorobenzene	107%		83-1	18%	

(a) Associated BS recovery outside control limits.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

AD

Prep Date

n/a

Page 1 of 2

Client Sample ID: RA-10 (5.5-6.5)

Lab Sample ID:

FA33668-8

Date Sampled: Date Received:

Q

05/04/16 05/05/16

Matrix: Method: SO - Soil SW846 8260C

Percent Solids: 80.7

Project:

BMSMC, Building 5 Area, Humacao, PR

Analyzed

05/05/16

Prep Batch **Analytical Batch** VY1148 n/a

Run #1 Run #2

Initial Weight

Final Volume

5.73 g

File ID

Y28349.D

5.0 ml

DF

1

Run #1 Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units
67-64-1	Acetone	ND	54	11	ug/kg
71-43-2	Benzene	ND	5.4	1.4	ug/kg
100-44-7	Benzyl Chloride	ND	5.4	1.5	ug/kg
74-97-5	Bromochloromethane	ND	5.4	1.2	ug/kg
75-27-4	Bromodichloromethane	ND	5.4	1.1	ug/kg
75-25-2	Bromoform	ND	5.4	1.1	ug/kg
78-93-3	2-Butanone (MEK)	ND	27	9.8	ug/kg
75-15-0	Carbon Disulfide	ND	5.4	1.1	ug/kg
56-23-5	Carbon Tetrachloride	ND	5.4	1.9	ug/kg
108-90-7	Chlorobenzene	ND	5.4	1.1	ug/kg
75-00-3	Chloroethane	ND	5.4	2.2	ug/kg
67-66-3	Chloroform	ND	5.4	1.3	ug/kg
110-82-7	Cyclohexane	ND	5.4	1.3	ug/kg
124-48-1	Dibromochloromethane	ND	5.4	1.1	ug/kg
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.4	2.4	ug/kg
106-93-4	1,2-Dibromoethane	ND	5.4	1.1	ug/kg
75-71-8	Dichlorodifluoromethane	ND	5.4	2.7	ug/kg
95-50-1	1,2-Dichlorobenzene	ND	5.4	1.1	ug/kg
541-73-1	1,3-Dichlorobenzene	ND	5.4	1.1	ug/kg
106-46-7	1,4-Dichlorobenzene	ND	5.4	1.1	ug/kg
75-34-3	1,1-Dichloroethane	ND	5.4	1.8	ug/kg
107-06-2	1,2-Dichloroethane	ND	5.4	101	ug/kg
75-35-4	1,1-Dichloroethylene	ND	5.4	1.1	ug/kg
156-59-2	cis-1,2-Dichloroethylene	ND	5.4	1.3	ug/kg
156-60-5	trans-1,2-Dichloroethylene	ND	5.4	1.6	ug/kg
78-87-5	1,2-Dichloropropane	ND	5.4	1.7	ug/kg
10061-01-5	cis-1,3-Dichloropropene	ND	5.4	2.1	ug/kg
10061-02-6	trans-1,3-Dichloropropene	ND	5.4	1,1	ug/kg
100-41-4	Ethylbenzene	ND	5.4	1.2	ug/kg
76-13-1	Freon 113	ND	5.4	1.3	ug/kg
591-78-6	2-Hexanone	ND	27	9.4	ug/kg
98-82-8	Isopropylbenzene	ND	5.4	1.5	ug/kg

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: RA-10 (5.5-6.5) Lab Sample ID:

Matrix:

FA33668-8 SO - Soil

Method: Project:

SW846 8260C

BMSMC, Building 5 Area, Humacao, PR

Date Sampled: 05/04/16 Date Received: 05/05/16 Percent Solids: 80.7

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
99-87-6	p-Isopropyltoluene	ND	5.4	1.1	ug/kg	
79-20-9	Methyl Acetate	ND	27	9.3	ug/kg	
74-83-9	Methyl Bromide	ND	5.4	2.8	ug/kg	
74-87-3	Methyl Chloride	ND	5.4	2.6	ug/kg	
108-87-2	Methylcyclohexane	ND	5.4	1.1	ug/kg	
75-09-2	Methylene Chloride	ND	11	4.3	ug/kg	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	27	12	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	5.4	1.2	ug/kg	
100-42-5	Styrene	ND	5.4	1.1	ug/kg	
75-85-4	Tert-Amyl Alcohol	ND	54	15	ug/kg	
75-65-0	Tert-Butyl Alcohol	ND	54	15	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.4	2.4	ug/kg	
127-18-4	Tetrachloroethylene	ND	5.4	1.4	ug/kg	
109-99-9	Tetrahydrofuran	ND	11	3.9	ug/kg	
108-88-3	Toluene	ND	5.4	1.2	ug/kg	
87-61-6	1,2,3-Trichlorobenzene	ND	5.4	2.1	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	5.4	1.6	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	5.4	1.1	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	5.4	2.0	ug/kg	
79-01-6	Trichloroethylene	ND	5.4	1.3	ug/kg	
75-69-4	Trichlorofluoromethane	ND	5.4	2.0	ug/kg	
95-63-6	1,2,4-Trimethylbenzene	ND	5.4	1.1	ug/kg	
75-01-4	Vinyl Chloride	ND	5.4	1.8	ug/kg	
	m,p-Xylene	ND	11	1.9	ug/kg	
95-47-6	o-Xylene	ND	5.4	1.2	ug/kg	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	107%		75-12	24%	
17060-07-0	1,2-Dichloroethane-D4	111%		72-13	35%	
2037-26-5	Toluene-D8	101%		75-17	26%	
460-00-4	4-Bromofluorobenzene	98%		71-13	33%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

DP

Client	Sample	ID:	TB	050416
--------	--------	-----	----	--------

Lab Sample ID: Matrix:

FA33668-9

AQ - Trip Blank Water

Date Sampled: Date Received:

04/11/16 05/05/16

Method:

SW846 8260C

Percent Solids:

Project: BMSMC, Building 5 Area, Humacao, PR

DF

1

Run #1 a

File ID J0976345.D Analyzed 05/06/16

Prep Date n/a

Prep Batch n/a

Q

Analytical Batch

VJ5288

Run #2

Purge Volume

Run #1 Run #2 5.0 ml

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units
67-64-1	Acetone	ND	25	10	ug/l
71-43-2	Benzene	ND	1.0	0.20	ug/l
100-44-7	Benzyl Chloride	ND	2.0	0.44	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.42	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l
75-25-2	Bromoform	ND	1.0	0.46	ug/l
78-93-3	2-Butanone (MEK)	ND	5.0	2.6	ug/l
75-15-0	Carbon Disulfide	ND	2.0	0.23	ug/l
56-23-5	Carbon Tetrachloride	ND	1.0	0.30	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l
75-00-3	Chloroethane	ND	2.0	0.63	ug/l
67-66-3	Chloroform	ND	1.0	0.30	ug/l
110-82-7	Cyclohexane	ND	1.0	0.26	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.26	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	0.81	ug/l
106-93-4	1,2-Dibromoethane	ND	2.0	0.33	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.27	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.24	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.39	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.26	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.28	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.22	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.31	ug/l
156-60-5	trans-1,2-Dichloroethylene b	ND	1.0	0.33	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.34	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.26	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.25	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.25	ug/l
76-13-1	Freon 113	ND	1.0	0.32	ug/l
591-78-6	2-Hexanone	ND	10	2.0	ug/l
98-82-8	Isopropylbenzene	ND	1.0	0.33	ug/l

tael Infante Méndez

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

4.9

Report of Analysis

Client Sample ID: TB 050416

Lab Sample ID: Matrix:

Method:

Project:

FA33668-9

AQ - Trip Blank Water

SW846 8260C

BMSMC, Building 5 Area, Humacao, PR

04/11/16 Date Sampled: Date Received: 05/05/16

Percent Solids:

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
99-87-6	p-Isopropyltoluene	ND	1.0	0.28	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	
74-83-9	Methyl Bromide	ND	2.0	0.50	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.23	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.4	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.24	ug/l	
75-85-4	Tert-Amyl Alcohol	ND	20	6.0	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	20	9.1	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.33	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/I	
109-99-9	Tetrahydrofuran	ND	5.0	1.4	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.51	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.37	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.27	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	0.20	ug/i	
75-01-4	Vinyl Chloride	ND	1.0	0.31	ug/l	
	m,p-Xylene	ND	2.0	0.30	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	102%		83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	96%		79-17	25%	
2037-26-5	Toluene-D8	101%		85-13	12%	
460-00-4	4-Bromofluorobenzene	105%		83-13	18%	
						- Ž

⁽b) Associated BS recovery outside control limits.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Section 5

Misc. Forms	
Custody Documents and Other Forms	
Includes the following where applicable: • Chain of Custody	

SGS ACCU	TECT .	- <i>a</i>	CHAI	N C)F (UST	ro: Fly	D¥	19.	1						52	_	PA	GE.	1	OF <u>/</u>
ACCU	1591.	- F	TLI. 732 32	9-0200	FAX: 7	32 329-3	110 4 179/3	40 A	FV:/	K.	FL.	lane as	ins	1416	765	<u> </u>	Total Control				
N. Carrier M. Carrier St. C.		S. Heyen		WWW.	acculati.c	ent.	~			-		SERVICE OF	5-3-s	diate	in the same	at the second	6	4.1	hén.	NI	
The state of the s	Project Name		DOMESTICAL MASS		manager of the last of the las		L			of Street	وسيف	П			-		DESCRIPTION OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TW	SEPECTO .	A STATE OF	2000000	Matrix Codes
Anderson Mulholland Assoc Inc.	BM	5 Rele	ase A	55	C55	MY	17					ا ۔ ا									DW - Drivtang Wate GW - Ground Wate
2700 Westchester	Seeds							men Res				18	- 1								WW - Water SW - Serface Water SQ - East
Jurchase NY	Huma	AAA	PR	Campa	ny Marin							82600	- 1								SU-Shrige SED-Sediment
mind Charles Court	Prosect #	DALD	FIX	Street A	directs					_		- 00									DI - DE LIQ - Dear Liques
Terry Taylor	Cleat Purchase	Clubra #		Cay			S	-		Δ		13	-	1			1				AR - Ar SOL - Other Solid
914-251-0400				Ľ		_						H									WP - Wips FB-Field Blank EB-Equipment Blan
V. Rivera, T-Taylor, D-Lindston	The state of the s			Attento	R-							VOC-Method									165-Piner Clark 19-Trip Grant
· •			Carrectore	_	1		H	Harrier I	of process	red Do		اذٍ إ					1				
sout control Field ID / Point of Collection	MECHICIANI			Remptod No.	1		9	8	e e	DI Waser	E C	12	.								LAS USE ONLY
RA-16 GWD		5/3/16	U ea	_	GW	3	3	2 2	+++	9 2	H	X	\dashv	-		+	+	⊢	Н		LAS USE ORLY
L EB 050316		5/3/16	1112	NR	EB		3	++	Н	+	++	X		+	+	_	╁	-	-	+	+
> 5-425		5/3/16	1535			3	3	П	П	_	††	X	\dashv	1	\top	+	+	 		_	
4 RA-11 GWS		5/3/16	1645		GW	3	3	TÌ	П	\top	11	X					\top			1	
F BPEB- 12		573/16	1730	11	EB	3	3				П	X									
6 RA-11 (10-11)		5/4/16	1110	11	174	4	Ц	Ш	Ш		3	X									
7 5-435		5/4/14	17/0	JY	GW	3	3	11	Ц	4	Ц	X	_	_	\perp	\perp					
8 RA-10 (5.5-6.5) 9 TR 150416			1235	MR		4		11	14	4	3	1	\dashv	_	4		_	\vdash		\dashv	
41 1 1 1 3 5 0 4 1 6		4/11/16	630	⊢	78	2	14.	-+-	╫	-	₩	X	\dashv	+			┼	⊢		-	+
		-	-		-	-	H	++	╢	+	╁┼	+		\dashv	+	+	-	-	\vdash		
				-	 	-	H	++	Н	+	╁┼	1-1		\dashv		+	╫		-	\dashv	-
Turnismed Time (Budiess days)	Property.	C Post in						proble i					W/S	Sept 1	Congre	Co	Terrando	/ Speci	el Iredius	itora 🔝	RESPONDED TO
S Day Hotel	Approved By (200) C	Assistant Phily I Date:		_	Common			-			EP Case EP Case			اللم	in R	eact	· 10	tal	hvdh	ture	ι π.
S Day Rudis 3 Stay Music		-		厚	FULL 11	Lavel 3+	4)			State	Forms		ľ	-	1=4	- 0-p	-		ene		-
2 Day MUSH				님	Commer	#4 TCT				Cities Cities	Fermel		— <u> -</u>	1	, 30	14	_	$\overline{}$	-	-	
Brimmen for agreedy samp	<u> </u>				ALI Date	of Kasa Randa C		ly Prot			e Contraction		ŀ	-2-	111	IAC	ryl_	M	246	597	y chloride
Emergency & Rush TIX data available VA Laboric				ALI Red	hazant = Ro	mater + QC	Sum	- P	artist (R	-				101	∩A inven	tory is	rentied	ester Lupon	receip	l in the f	aboratory
1 To To Pala 5741		Annahud By:			relow sec	h time a		<u>وضائا د</u> ا استجاد	lut.			wiling or	ourtor d		no Timo:			37.5		-1-	NO STORY
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	16 150	1	ed E	-X			2			EX				+			12/5	4	5	5/5	16 145
Before the Control of		3						ا استسم	T-						- T		4	ستية ا			
		5					٢	610	2			March Marchael				elitzakia.			\$	40	28
								2.5													738

FA33668: Chain of Custody Page 1 of 3

EXECUTIVE NARRATIVE

SDG No:

FA33668

Laboratory:

Accutest, Florida

Analysis:

SW846-8260C

Number of Samples:

Location:

BMSMC, Building 5 Area

Humacao, PR

SUMMARY:

Eight (8) samples and one (1) trip blank were analyzed for VOAs TCL list by method SW846-8260C. Samples were validated following USEPA Hazardous Waste Support Section SOP No. HW-33A Revision 0 SOM02.2. Low/Medium Volatile Data Validation. July, 2015. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

None

Critical findings:

None

Major findings:

None

Minor findings:

- 1. The following sample was analyzed outside of holding time for method SW846 8260C: FA33668-9. Sample was received and analyzed outside the holding time. No action taken, this sample is a Trip Blank.
- 2. Initial calibration, initial calibration verification, and continuing calibration verification within the validation guidance document required criteria. 1,2,4-trichlorobenzen %D was outside the method performance criteria but within the guidance document criteria. No action taken on affected samples. Closing calibration check verification included in data package.
- 3. MS/MSD % recovery for tetrachloroethyle outside the laboratory control limit (> UL) in sample FA33668-8MS/-8MSD. Tetrachloroethylene not detected in the samples, results are accepted.
- **4.** MSD % recovery for tert-butyl alcohol outside the laboratory control limit (> UL) in sample FA33668-1MS/-1MSD. Tert-butyl alcohol not detected in the samples, results are accepted.
- 5. Blank spike (aqueous) % recovery for trans-1,2-dichloroethylene outside the laboratory control limit (> UL) in sample FA33668-8MS/-8MSD. trans-1,2-dichloroethylene not detected in the samples, results are accepted.

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

May 23, 2016

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: FA33668-1

Sample location: BMSMC Building 5 Area Sampling date: 5/3/2016

Matrix: Groundwater

	d												20																			
o-Xylene	m,p-Xylene	Vinyl chloride	1,2,4-Trimethylbenzene	Trichlorofluoromethane	Trichloroethene	1,1,2-Trichloroethane	1,1,1-Trichloroethane	1,2,4-Trichlorobenzene	1,2,3-Trichlorobenzene	Toluene	Tetrahydrofuran	Tetrachloroethene	1,1,2,2-Tetrachloroethane	Tert-Butyl Alcohol	Tert-Amyl Alcohol	Styrene	Methyl Tert Butyl Ether	4-Methyl-2-pentanone(MIBK)	Methylene chloride	Methylcyclohexane	Methyl Chloride	Methyl Bromide	Methyl Acetate	p-IsopropyItoluene	Isopropylbenzene	2-Hexanone	Freon 113	Ethylbenzene	trans-1,3-Dichloropropene	cis-1,3-Dichloropropene	1,2-Dichloropropane	trans-1,2-Dichloroethene
1.0	2.0	1.0	1.0	2.0	1.0	1.0	1.0	2.0	2.0	1.0	5.0	1.0	1.0	20	20	1.0	0.75	5.0	5.0	1.0	2.0	2.0	20	1.0	1.0	10	1.0	1.0	1.0	1.0	1.0	1.0
ug/L	ug/L	ug/L	ug/L	ug/L	ug∕L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/∟	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug∕L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	i	ì		c	1		6	ı	*			10		3.	E		_	6	9		0	э	•		э	1	· C	,	ı	en e	1	e
C	C		C	C	C	C	C	_	C	C	_	_	C	C	C	C	٤	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Sample ID: FA33668-2
Sample location: BMSMC Building 5 Area
Sampling date: 5/3/2016

Matrix: AQ - Equipment Blank

	METHOD: 87POC					
Analyte Name	Result	Units Di	Dilution Factor	Lab Flag	Validation	Validation Reportable
Acetone	25	ug/L	1.0	ā	C	Yes
Benzene	1.0	ug/L	1.0		C	Yes
Benzyl Chloride	2.0	ug/L	1.0		C	Yes
Bromochloromethane	1.0	ug/L	1.0	T.	C	Yes
Bromodichloromethane	1.0	ug/L	1.0		C	Yes
Bromoform	1.0	ug/L	1.0		C	Yes
2-Butanone (MEK)	5.0	ug/L	1.0		C	Yes
Carbon disulfide	2.0	ug/L	1.0		C	Yes
Carbon tetrachloride	1.0	ug/L	1.0		–	Yes
Chlorobenzene	1.0	ug/L	1.0		C	Yes
Chloroethane	2.0	ug/L	1.0		C	Yes
Chloroform	1.0	ug/L	1.0	ø	_	Yes
Cyclohexane	1.0	ug/L	1.0		_	Yes
Dibromochloromethane	1.0	ug/L	1.0	•	_	Yes
1,2-Dibromo-3-chloropropane	5.0	ug/L	1.0	•	C	Yes
1,2-Dibromoethane	2.0	ug∕L	1.0	ı	C	Yes
Dichlorodifluoromethane	2.0	ug/L	1.0		C	Yes
1,2-Dichlorobenzene	1.0	ug/L	1.0	•	C	Yes
1,3-Dichlorobenzene	1.0	ug/L	1.0		C	Yes
1,4-Dichlorobenzene	1.0	ug/L	1.0		C	Yes
1,1-Dichloroethane	1.0	ug/L	1.0	•	C	Yes
1,2-Dichloroethane	1.0	ug/L	1.0	•	C	Yes
1,1-Dichloroethene	1.0	ug/L	1.0	,	C	Yes
cis-1,2-Dichloroethene	1.0	ug/L	1.0		C	Yes
trans-1,2-Dichloroethene	1.0	ug/L	1.0	•	_	Yes
1,2-Dichloropropane	1.0	ug/L	1.0	,	_	Yes

cis-1,3-Dichloropropene	1.0	1/0/1	1.0	,	=	V _{DC}
trans-1,3-Dichloropropene	1.0	ug/L	1.0	c . :	C (Yes
Ethylbenzene	1.0	ug/L	1.0		C	Yes
Freon 113	1.0	ug/L	1.0	i.	C	Yes
2-Hexanone	10	ug/L	1.0	r	C	Yes
Isopropylbenzene	1.0	ug/L	1.0	,	C	Yes
p-Isopropyitoluene	1.0	ug/L	1.0		C	Yes
Methyl Acetate	20	ug/L	1.0		C	Yes
Methyl Bromide	2.0	ug/L	1.0		C	Yes
Methyl Chloride	2.0	ug/L	1.0	£.	C	Yes
Methylcyclohexane	1.0	ng/L	1.0		C	Yes
Methylene chloride	5.0	ug/L	1.0	. 1	C	Yes
4-Methyl-2-pentanone(MIBK)	5.0	ug/L	1.0	E.	C	Yes
Methyl Tert Butyl Ether	1.0	ug/L	1.0	.1	C	Yes
Styrene	1.0	ug/L	1.0		C	Yes
Tert-Amyl Alcohol	20	ug/L	1.0	ĸ.	C	Yes
Tert-Butyl Alcohol	20	ug/L	1.0	í	C	Yes
1,1,2,2-Tetrachloroethane	1.0	ug/L	1.0	Ŷ	C	Yes
Tetrachloroethene	1.0	ug/L	1.0	ï	C	Yes
Tetrahydrofuran	5.0	ug/L	1.0		C	Yes
Toluene	1.0	ug/L	1.0	i i	C	Yes
1,2,3-Trichlorobenzene	2.0	ug/L	1.0		C	Yes
1,2,4-Trichlorobenzene	2.0	ug/L	1.0		C	Yes
1,1,1-Trichloroethane	1.0	ug/L	1.0	i.	C	Yes
1,1,2-Trichloroethane	1.0	ug/L	1.0		C	Yes
Trichloroethene	1.0	ug/L	1.0	•	C	Yes
Trichlorofluoromethane	2.0	ug/L	1.0	ı	C	Yes
1,2,4-Trimethylbenzene	1.0	ug/L	1.0		C	Yes
Vinyl chloride	1.0	J/Bn	1.0	1	_	Yes
m,p-Xylene	2.0	ug/L	1.0	i	C	Yes
o-Xylene	1.0	ug/Ĺ	1.0	•	C	Yes

e 5

Sample ID: FA33668-3

Sample location: BMSMC Building 5 Area Sampling date: 5/3/2016

Matrix: Groundwater

	METHOD: 8260C					
Analyte Name	Result	Units Di	Dilution Factor	Lab Flag	Validation	idation Reportable
Acetone	25	ug/L	1.0		C	Yes
Benzene	1.0	ug/L	1.0		_	Yes
Benzyl Chloride	2.0	ug/L	1.0		C	Yes
Bromochloromethane	1.0	ug/L	1.0	•	C	Yes
Bromodichloromethane	1.0	ug/L	1.0	•	C	Yes
Bromoform	1.0	սg/L	1.0		<u>_</u>	Yes
2-Butanone (MEK)	5.0	ug/L	1.0		<u>_</u>	Yes
Carbon disulfide	2.0	ug/L	1.0	•	C	Yes
Carbon tetrachloride	1.0	ug/L	1.0	•	C	Yes
Chlorobenzene	0.44	ug/L	1.0	_	<u>_</u>	Yes
Chloroethane	2.0	ug/L	1.0	,	C	Yes
Chloroform	1.0	ug/L	1.0	•	C	Yes
Cyclohexane	0,86	ug/L	1.0	_	S	Yes
Dibromochloromethane	1.0	ug/L	1.0	,	C	Yes
1,2-Dibromo-3-chloropropane	5.0	ug/L	1.0	•	C	Yes
1,2-Dibromoethane	2.0	ug/L	1.0	•	C	Yes
Dichlorodifluoromethane	0.68	ug∕L	1.0	_	⊆	Yes
1,2-Dichlorobenzene	1.0	ug/L	1.0		C	Yes
1,3-Dichlorobenzene	1.0	ug/L	1.0	•	C	Yes
1,4-Dichlorobenzene	1.0	ug∕L	1.0	•	C	Yes
1,1-Dichloroethane	1.0	ug∕L	1.0		C	Yes
1,2-Dichloroethane	1.0	ug∕L	1.0	•	C	Yes
1,1-Dichloroethene	1.0	ug∕L	1.0		C	Yes
cis-1,2-Dichloroethene	1.0	ug/L	1.0	•	C	Yes
trans-1,2-Dichloroethene	1.0	ug/L	1.0	ŧ	C	Yes
1,2-Dichloropropane	1.0	ug/L	1.0	•	C	Yes

o-Xylene	m,p-Xylene	Vinyl chloride	1,2,4-Trimethylbenzene	Trichlorofluoromethane	Trichloroethene	1,1,2-Trichloroethane	1,1,1-Trichloroethane	1,2,4-Trichlorobenzene	1,2,3-Trichlorobenzene	Toluene	Tetrahydrofuran	Tetrachioroethene	1,1,2,2-Tetrachloroethane	Tert-Butyl Alcohol	Tert-Amyl Alcohol	Styrene	Methyl Tert Butyl Ether	4-Methyl-2-pentanone(MIBK)	Methylene chloride	Methylcyclohexane	Methyl Chloride	Methyl Bromide	Methyl Acetate	p-Isopropyitoluene	Isopropylbenzene	2-Hexanone	Freon 113	Ethylbenzene	trans-1,3-Dichloropropene	cis-1,3-Dichloropropene
1.0	2.0	1.0	1.0	2.0	1.0	1.0	1.0	2.0	2.0	1.0	5.0	1.0	1.0	20	20	1.0	1.6	5.0	5.0	1.0	2.0	2.0	20	1.0	1.0	10	8.7	1.0	1.0	1.0
ng/L	ug/L	ug/L	J∕Bn	ug/L	ug/L	ug/L	ug/L	ug/L	⊔g/L	ug/L	ug∕L	ug/L	ug/L	ug/L	ug/L	ug/L	⊔g/L	ug/L	ug/∟	ug/L	ug/L	ug/L	J/8n	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1			ı		ŕ	ı.		E,	, a		ŧ.	2		Ęŝ.	,	r	ı	, 1	¢	(1)	,	O	O	ï	ĸ		1	ić:	ï	r
C	C		<u>_</u>	C	C	C	C	C	C	C	C	C	C	C	C	C	1	C	C	C	C	C	C	C	C	C	l	C	C	C
Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

•,

6 27

Sample ID: FA33668-4
Sample location: BMSMC Building 5 Area
Sampling date: 5/3/2016

Matrix: Groundwater

-	אורווויסט. מצטטנ					
Analyte Name	Result	Ųì	Dilution Factor	Lab Flag	Validation Reportable	Reportable
Acetone	25	ug/L	1.0	•	C	Yes
Benzene	1.0	ug/L	1.0	1	_	Yes
Benzyl Chloride	2.0	ug/L	1.0	,	<u> </u>	Yes
Bromochloromethane	1.0	ug/L	1.0	•	C	Yes
Bromodichloromethane	1.0	ug/L	1.0	•	C	Yes
Bromoform	1.0	ug/L	1.0		C	Yes
2-Butanone (MEK)	5.0	ug/L	1.0	•	C	Yes
Carbon disulfide	2.0	ug/L	1.0	•	C	Yes
Carbon tetrachloride	1.0	ug/L	1.0	,	C	Yes
Chlorobenzene	0.76	ug/L	1.0	_	5	Yes
Chloroethane	2.0	ug/L	1.0		C	Yes
Chloroform	1.0	ug/L	1.0	•	C	Yes
Cyclohexane	1.0	ug/L	1.0	•	C	Yes
Dibromochloromethane	1.0	ug/L	1.0		C	Yes
1,2-Dibromo-3-chloropropane	5.0	ug/L	1.0	٠	C	Yes
1,2-Dibromoethane	2.0	ug/L	1.0	•	<u>_</u>	Yes
Dichlorodifluoromethane	2.0	ug/L	1.0	•	_	Yes
1,2-Dichlorobenzene	1.0	ug/L	1.0		C	Yes
1,3-Dichlorobenzene	1.0	ug/L	1.0		C	Yes
1,4-Dichlorobenzene	1.0	ug/L	1.0		_	Yes
1,1-Dichloroethane	1.0	ug/L	1.0	•	_	Yes
1,2-Dichloroethane	1.0	ug/L	1.0	•	C	Yes
1,1-Dichloroethene	1.0	ug/L	1.0	å	C	Yes
cis-1,2-Dichloroethene	1.0	⊔8/L	1.0	•	C	Yes
trans-1,2-Dichloroethene	1.0	ug/L	1.0		_	Yes
1,2-Dichloropropane	1.0	ug/Ľ	1.0	,	C	Yes

1.0 ug/L	ug/L 1.0	ug/L 1.0 -	ug/L 1.0 -	ug/L 1.0 -	ug/L 1.0	1.0	ug/L 1.0	ug/L 1.0 -	1.0	ug/L 1.0 -	ug/L 1.0	ug/L 1.0	ug/L 1.0 -	ug/L 1.0 -	ug/L 1.0	ug/L 1.0 -	ug/L 1.0	ug/L 1.0 -	ug/L 1.0 -	1.0	ug/L 1.0	ug/L 1.0 -	ug/L 1.0	ug/L 1.0 -	1.0 -	ug/L 1.0	ug/L 1.0	ug/L 1.0	1.0	ug/L 1.0	
U Yes																															

. .

Sample ID: FA33668-5
Sample location: BMSMC Building 5 Area
Sampling date: 5/3/2016
Matrix: AQ - Equipment Blank

Analyte Name	Result	Units D	Dilution Factor Tab Flag	lah Flag	Validation 6	Renortable
Acetone	25		1.0	•	_	Yes
Benzene	1.0	ug/L	1.0		<u> </u>	Yes
Benzyl Chloride	2.0	ug/L	1.0	1	C	Yes
Bromochloromethane	1.0	⊔g/L	1.0		C	Yes
Bromodichloromethane	1.0	ug/L	1.0		C	Yes
Bromoform	1.0	ug/L	1.0	1	C	Yes
2-Butanone (MEK)	5.0	ug/L	1.0		C	Yes
Carbon disulfide	2.0	ug/L	1.0	,	C	Yes
Carbon tetrachloride	1.0	ug/L	1.0		C	Yes
Chlorobenzene	1.0	ug/L	1.0	,	C	Yes
Chloroethane	2.0	ug/L	1.0		C	Yes
Chloroform	1.0	ug/L	1.0		C	Yes
Cyclohexane	1.0	ug/L	1.0		C	Yes
Dibromochloromethane	1.0	ug/L	1.0	,	C	Yes
1,2-Dibromo-3-chloropropane	5.0	ug/L	1.0	•	⊂	Yes ·
1,2-Dibromoethane	2.0	ug/L	1.0		_	Yes
Dichlorodifluoromethane	2.0	ug/L	1.0		C	Yes
1,2-Dichlorobenzene	1.0	ug/L	1.0	•	C	Yes
1,3-Dichlorobenzene	1.0	ug/L	1.0	٠	⊂	Yes
1,4-Dichlorobenzene	1.0	ug/L	1.0	•	C	Yes
1,1-Dichloroethane	1.0	ug∕L	1.0	ı	C	Yes
1,2-Dichloroethane	1.0	ug/L	1.0	•	C	Yes
1,1-Dichloroethene	1.0	ug/L	1.0	ı	C	Yes
cis-1,2-Dichloroethene	1.0	ug/L	1.0		C	Yes
trans-1,2-Dichloroethene	1.0	ug/L	1.0	•	C	Yes
1,2-Dichloropropane	1.0	ug/L	1.0		C	Yes

o-Xylene 1.0	m,p-Xylene 2.1	Vinyl chloride 1.1	1.0.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	richlorofluoromethane 2.	richloroethene 1.0	,1,2-Trichloroethane 1.0	.,1,1-Trichloroethane 1.0	.,2,4-Trichlorobenzene 2.0	2.0 2.3-Trichlorobenzene	oluene 1.0	etrahydrofuran 5.0	Tetrachloroethene 1.	l,1,2,2-Tetrachloroethane 1.	Tert-Butyl Alcohol 2	Tert-Amyl Alcohol 2	Styrene 1.	Methyl Tert Butyl Ether 1.	4-Methyl-2-pentanone(MIBK) 5.	Methylene chloride 5.	Methylcyclohexane 1.	Methyl Chloride 2.	Methyl Bromide 2.	Methyl Acetate 2	p-Isopropyltoluene 1	sopropylbenzene 1.	2-Hexanone 1	Freon 113 1	Ethylbenzene 1	trans-1,3-Dichloropropene 1	cis-1,3-Dichloropropene 1
0												1.0	1.0		20	1.0			5.0		2.0		20	1.0		10	1.0		1.0	Ö
ug/L	ug∕L	ug/L	ug/L	⊔g/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug∕L	ug/L	ug/L	ug/L	ug∕L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ng/L	ug∕L
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
•	•	1	ï	•	•	ı			1		٠	1	٠		1	ı	1,5	21		1	29		Fg!	33	r			r	1	í
C	C	C	C	C	⊂	C	C	C	C	C	C	C	C	C	C	C	୍	C	C	C	C	C	C	C	C	C	C	C	C	C
Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Sample ID: FA33668-6

Sample location: BMSMC Building 5 Area

Sampling date: 5/4/2016 Matrix: Soil

METHOD: 8260C					
Result	Units Di	lution Factor	Lab Flag	Validation	Reportable
62	ug/Kg	1.0		C	Yes
6.2	ug/Kg	1.0	1	C	Yes
6.2	ug/Kg	1.0		U	Yes
6.2	ug/Kg	1.0	÷	C	Yes
6.2	ug/Kg	1.0	•	C	Yes
6.2	ug/Kg	1.0		_	Yes
31	ug/Kg	1.0	•	_	Yes
6.2	ug/Kg	1.0	٠	C	Yes
6.2	ug/Kg	1.0		_	Yes
6.2	ug/Kg	1.0		C	Yes
6.2	ug/Kg	1.0		_	Yes
6.2	ug/Kg	1.0	٠	_	Yes
6.2	ug/Kg	1.0		_	Yes
6.2	ug/Kg	1.0	Ŷ	_	Yes
6.2	ug/Kg	1.0		C	Yes
6.2	ug/Kg	1.0	ė	C	Yes
6.2	ug/Kg	1.0	,	_	Yes
6.2	ug/Kg	1.0	,	C	Yes
6.2	ug/Kg	1.0	,	C	Yes
6.2	⊔g/Kg	1.0		C	Yes
6.2	ug/Kg	1.0		_	Yes
6.2	ug/Kg	1.0	,	_	Yes
6.2	ug/Kg	1.0		_	Yes
6.2	⊔g/Kg	1.0		C	Yes
6.2	ug/Kg	1.0	•	C	Yes
6.2	ug/Kg	1.0		C	Yes
	Result 62 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2			ult Units Dilutio vg/kg vg/kg	ult Units Dilution Factor Lab Flag Validation ug/kg 1.0 ug/kg 1.0

1,2,4-Trimethylbenzene Vinyl chloride m,p-Xylene o-Xylene	1,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane	1,2,4-Trichlorobenzene 1,1,1-Trichloroethane	Tetrahydrofuran Toluene	1,1,2,2-letrachloroethane Tetrachloroethene	Tert-Butyl Alcohol	Tert-Amyl Alcohol	Methyl Tert Butyl Ether	4-Methyl-2-pentanone(MIBK)	Methylene chloride	Methyl Chloride	Methyl Bromide	Methyl Acetate	p-IsopropyItoluene	Isopropylbenzene	2-Hexanone	Freon 113	Ethylbenzene	trans-1,3-Dichloropropene	cis-1,3-Dichloropropene
6.2 6.2 12 6.2	6.2 6.2	6.2	12 6.2	6.2	62	6.2	л б. 2	31	5.0	6.2	6.2	31	6.2	6.2	31	6.2	6.2	6.2	6.2
ug/Kg ug/Kg ug/Kg	ug/Kg ug/Kg	ug/Kg	ug/Kg ug/Kg	ug/Kg ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
1.0	1.0 1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
F 1 1 1			1 1		·		·	ı	- , 1	: :9	×	•	31		•	*	, i		
CCCC	c c c	c c c	: c c	C C	C	C C	= C	C	⊆ c	= C	C	C	C	C	C	C	C	C	C

Sample ID: FA33668-7

Sample location: BMSMC Building 5 Area Sampling date: 5/4/2016

Matrix: Groundwater

Dilution Factor Lab Flag V 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
actor La

cis-1,3-Dichloropropene	1.0	ug/L	1.0		C	Yes
trans-1,3-Dichloropropene	1.0	ug/L	1.0	ă	C	Yes
Ethylbenzene	1.0	ug/L	1.0	r	C	Yes
Freon 113	1.0	ug/L	1.0	k	C	Yes
2-Hexanone	10	ug/L	1.0	í	C	Yes
Isopropylbenzene	10.1	ug/L	1.0	e	ı	Yes
p-Isopropyltoluene	1.0	ug/L	1.0	x	C	Yes
Methyl Acetate	20	ug/L	1.0		C	Yes
Methyl Bromide	2.0	ug/L	1.0	,6	C	Yes
Methyl Chloride	2.0	ug/L	1.0	ı	C	Yes
Methylcyclohexane	1.0	ug/L	1.0	0	C	Yes
Methylene chloride	5.0	ug/L	1.0		C	Yes
4-Methyl-2-pentanone(MIBK)	5.0	ug/L	1.0		C	Yes
Methyl Tert Butyl Ether	11.0	ug/L	1.0	e:	•	Yes
Styrene	1.0	⊔g/L	1.0		C	Yes
Tert-Amyl Alcohol	12.8	ug/L	1.0	_	⊆	Yes
Tert-Butyl Alcohol	223	ug/L	1.0	e	•	Yes
1,1,2,2-Tetrachloroethane	1.0	ug/L	1.0		C	Yes
Tetrachloroethene	1.0	ug/L	1.0	1	C	Yes
Tetrahydrofuran	1.7	ug/L	1.0	_	2	Yes
Toluene	0.27	ug/L	1.0	_	2	Yes
1,2,3-Trichlorobenzene	2.0	ug/L	1.0	1	C	Yes
1,2,4-Trichlorobenzene	2.0	ug/L	1.0	1,	C	Yes
1,1,1-Trichloroethane	1.0	ug/L	1.0	,	C	Yes
1,1,2-Trichloroethane	1.0	ug/L	1.0	E		Yes
Trichloroethene	1.0	ug/L	1.0	.1	C	Yes
Trichlorofluoromethane	2.0	ug/L	1.0		C	Yes
1,2,4-Trimethylbenzene	1.0	ug/L	1.0		C	Yes
Vinyl chloride	1.0	ug/L	1.0	,	C	Yes
m,p-Xylene	2.0	ug/L	1.0	,	C	Yes
o-Xylene	1.0	ug/L	1.0		C	Yes

Sample ID: FA33668-8
Sample location: BMSMC Building 5 Area
Sampling date: 5/4/2016
Matrix: Soil

METHOD: 8260C

Analyte Name Acetone Benzene Benzyl Chloride Bromochloromethane Bromodichloromethane Bromoform 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Cyclohexane Dibromochloromethane 1,2-Dibromo-3-chloropropane	Result 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4	Units Dil	_	ution Factor 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Units Dilution Factor Lab Flagus/Kg 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0/Kg 1.0 -	ution Factor Lab Flag Validation 1.0 - U
e e Chloride	5.4 5.4	ug/Kg	<u> </u>			
lloromethane	5.4	ug/Kg	<u> </u>	о c		
odichloromethane	5.4	ug/Kg	Н	.0	.0	1
moform	5.4	ug/Kg	<u></u>	Ö	-	•
-Butanone (MEK)	27	ug/Kg	_	.0	.0	
Carbon disulfide	5.4	ug/Kg		1.0	1.0	•
Carbon tetrachloride	5.4	ug/Kg		1.0	1.0 -	•
Chlorobenzene	5.4	ug/Kg		1.0	1.0 -	•
Chloroethane	5.4	ug/Kg		1.0	1.0	,
Chloroform	5.4	ug/Kg		1.0	1.0 -	•
Cyclohexane	5.4	ug/Kg		1.0	1.0	
Dibromochloromethane	5,4	ug/Kg		1.0	1.0 -	
1,2-Dibromo-3-chloropropane	5,4	ug/Kg		1.0	1.0	à
1,2-Dibromoethane	5.4	ug/Kg		1.0	1.0	ð
Dichlorodifluoromethane	5.4	ug/Kg		1.0	1.0	à
1,2-Dichlorobenzene	5.4	ug/Kg		1.0	1,0 -	•
1,3-Dichlorobenzene	5.4	ug/Kg		1.0	1.0	ą
1,4-Dichlorobenzene	5.4	ug/Kg		1.0	1.0	à
1;1-Dichloroethane	5.4	ug/Kg		1.0	1.0 -	
1,2-Dichloroethane	5.4	ug/Kg		1.0	1.0 -	•
1,1-Dichloroethene	5.4	ug/Kg		1.0	1.0	à
cis-1,2-Dichloroethene	5.4	ug/Kg		1.0	1.0	1.0 - U
trans-1,2-Dichloroethene	5.4	ug/Kg		1.0	1.0 -	1.0 - U
1,2-Dichloropropane	5,4	ug/Kg		1.0	1.0	1.0 - U

o-Xylene	m,p-Xylene	Vinyl chloride	1,2,4-Trimethylbenzene	Trichlorofluoromethane	Trichloroethene	1,1,2-Trichloroethane	1,1,1-Trichloroethane	1,2,4-Trichlorobenzene	1,2,3-Trichlorobenzene	Toluene	Tetrahydrofuran	Tetrachloroethene	1,1,2,2-Tetrachloroethane	Tert-Butyl Alcohol	Tert-Amyi Alcohol	Styrene	Methyl Tert Butyl Ether	4-Methyl-2-pentanone(MIBK)	Methylene chloride	Methylcyclohexane	Methyl Chloride	Methyl Bromide	Methyl Acetate	p-Isopropyltoluene	Isopropylbenzene	2-Hexanone	Freon 113	Ethylbenzene	trans-1,3-Dichloropropene	cis-1,3-Dichloropropene
5.4	11	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	11	5.4	5.4	54	54	5.4	5.4	27	11	5.4	5.4	5.4	27	5.4	5.4	27	5.4	5.4	5.4	5.4
ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
r				í.				1		r	i	ī	,		e:	9	Æ		i.e.	,		×		91	·	10	e).	, k		
C	C	C	C	C	C	C	C	C	C	C	C	_	_	C	C	_	C	C	C	C	_	C	C	C	C	C	C	C	C	C
Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Sample ID: FA33668-9

Sample location: BMSMC Building 5 Area Sampling date: 4/11/2016

Matrix: AQ - Trip Blank Water

METHOD: 8260C

	INICION. 0200C	נססכ					
Analyte Name		Result		Dilution Factor Lab Flag	Lab Flag	Validation	alidation Reportable
Acetone		25	ug/L	1,0	1	C	Yes
Benzene		1.0	ug/L	1,0	•	C	Yes
Benzyl Chloride		2.0	ug/L	1.0	•	C	Yes
Bromochloromethane		1.0	ug/L	1.0	•	C	Yes
Bromodichloromethane		1.0	ug/L	1.0	ı	C	Yes
Bromoform		1.0	ug/L	1.0	1	C	Yes
2-Butanone (MEK)		5.0	ug/L	1,0	•	_	Yes
Carbon disulfide		2.0	ug/L	1.0	•	C	Yes
Carbon tetrachloride		1.0	ug/L	1.0	•	C	Yes
Chlorobenzene		1.0	ug/L	1.0	ı	C	Yes
Chloroethane		2.0	ug/L	1.0	•	C	Yes
Chloroform		1.0	ug/L	1.0	•	_	Yes
Cyclohexane		1.0	ug/L	1.0	•	C	Yes
Dibromochloromethane		1.0	ug/L	1.0	ŧ	C	Yes
1,2-Dibromo-3-chloropropane		5.0	ug/L	1.0	ı	C	Yes
1,2-Dibromoethane		2.0	ug/L	1,0	1	C	Yes
Dichlorodifluoromethane		2.0	ug/L	1.0	•	C	Yes
1,2-Dichlorobenzene		1.0	ug/L	1,0	ı	C	Yes
1,3-Dichlorobenzene		1.0	ug/L	1.0		C	Yes
1,4-Dichlorobenzene		1.0	ug/L	1.0	1 35	C	Yes
1,1-Dichloroethane		1.0	ug/L	1.0	•	C	Yes
1,2-Dichloroethane		1.0	ug/L	1.0	•	C	Yes
1,1-Dichloroethene		1.0	ug/L	1.0	ı	C	Yes
cis-1,2-Dichloroethene		1.0	ug/L	1,0	ı	C	Yes
trans-1,2-Dichloroethene		1.0	ug/L	1.0	•	_	Yes
1,2-Dichloropropane		1.0	ug/L	1.0	•	C	Yes

m,p-Xylene o-Xylene	Vinyl chloride	1,2,4-Trimethylbenzene	Trichlorofluoromethane	Trichloroethene	1,1,2-Trichloroethane	1,1,1-Trichloroethane	1,2,4-Trichlorobenzene	1,2,3-Trichlorobenzene	Toluene	Tetrahydrofuran	Tetrachloroethene	1,1,2,2-Tetrachloroethane	Tert-Butyl Alcohol	Tert-Amyl Alcohol	Styrene	Methyl Tert Butyl Ether	4-Methyl-2-pentanone(MIBK)	Methylene chloride	Methylcyclohexane	Methyl Chloride	Methyl Bromide	Methyl Acetate	p-IsopropyItoluene	Isopropylbenzene	2-Hexanone	Freon 113	Ethylbenzene	trans-1,3-Dichloropropene	cis-1,3-Dichloropropene
2.0 1.0	1.0	1.0	2.0	1.0	1.0	1.0	2.0	2.0	1.0	5.0	1.0	1.0	20	20	1.0	0.75	5.0	5.0	1.0	2.0	2.0	20	1.0	1.0	10	1.0	1.0	1.0	1.0
ug/L	ug/L	ug/L	ug/L	⊔g/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	,				1	ı.		ï	ı	ı	٠		,		ı		į,	Ş.	·		2.	*.	J.	1.	· ·			0	
C C	C	C	C	_	C	C	_	C	_	C	C	C	C	C	C	_	C	C	C	C	C	C	C	C	C	C	C	C	C
Yes Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

	Project Number:FA33668 Date:May_03-04,_2016 Shipping date:May_04,_2016 EPA Region:2
REVIEW OF VOLATILE ORG Low/Medium Volatile Da	
The following guidelines for evaluating volatile orga- validation actions. This document will assist the review more informed decision and in better serving the needs assessed according to USEPA data validation guide precedence: USEPA Hazardous Waste Support SOM02.2. Low/Medium Volatile Data Validation. July actions listed on the data review worksheets are from otherwise noted.	ver in using professional judgment to make s of the data users. The sample results were ance documents in the following order of Section SOP No. HW-33A Revision O y, 2015. The QC criteria and data validation
The hardcopied (laboratory name)Accutest been reviewed and the quality control and performar VOCs included:	data package received has note data summarized. The data review for
Lab. Project/SDG No.:FA33668	68-5
X Data Completeness X Holding Times	X Laboratory Control SpikesX Field DuplicatesX CalibrationsX Compound IdentificationsX Compound QuantitationX Quantitation Limits
Definition of Qualifiers:	

Definition of Qualifiers:

- J-Estimated results
- U-Compound not detected
- R-Rejected data
- Estimated nondefect UJ-

Reviewer: Date:___May_23, 2016

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
4.5		

All criteria were metX
Criteria were not met
and/or see below

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE ANALYZED	pН	ACTION
criteria. The foll	lowing samples were nple was received and	run outside of holdin	ig time i	preservation within required for method SW846 8260C: time. No action taken, this

<u>Criteria</u>

Aqueous samples – 14 days from sample collection for preserved samples (pH \leq 2, 4 \pm 2°C), no air bubbles.

Aqueous samples – 7 days from sample collection for unpreserved samples, 4°C, no air bubbles. Soil samples- 14 days from sample collection.

Cooler temperature (Criteria: 4 + 2 °C): 2.8° C - OK

Actions

Aqueous samples

- a. If there is no evidence that the samples were properly preserved (pH < 2, $T = 4^{\circ}C \pm 2^{\circ}C$), but the samples were analyzed within the technical holding time [7 days from sample collection], no qualification of the data is necessary.
- b. If there is no evidence that the samples were properly preserved, and the samples were analyzed outside of the technical holding time [7 days from sample collection], qualify detects for all volatile compounds as estimated (J) and non-detects as unusable (R).
- c. If the samples were properly preserved, and the samples were analyzed within the technical holding time [14 days from sample collection], no qualification of the data is necessary.
- d. If the samples were properly preserved, but were analyzed outside of the technical holding time [14 days from sample collection], qualify detects as estimated (J) and non-detects as unusable (R).
- e. If air bubbles were present in the sample vial used for analysis, qualify detected compounds as estimated (J-) and non-detected compounds as estimated (UJ).

Non-aqueous samples

- a. If there is no evidence that the samples were properly preserved (T < -7°C or T = 4°C \pm 2°C and preserved with NaHSO₄), but the samples were analyzed within the technical holding time [14 days from sample collection], qualify detects for all volatile compounds as estimated (J) and non-detects as (UJ) or unusable (R) using professional judgment.
- b. If the samples were properly preserved, and the samples were analyzed within the technical holding time [14 days from sample collection], no qualification of the data is necessary.
- c. If there is no evidence that the samples were properly preserved, and the samples were analyzed outside of the technical holding time [14 days from sample collection], qualify detects for all volatile compounds as estimated (J) and non-detects as unusable (R).
- d. If the samples were properly preserved, but were analyzed outside of the technical holding time [14 days from sample collection], qualify detects as estimated (J) and non-detects as unusable (R).

Qualify TCLP/SPLP samples

- a. If the TCLP/SPLP ZHE procedure is performed within the extraction technical holding time of 14 days, detects and non-detects should not be qualified.
- b. If the TCLP/SPLP ZHE procedure is performed outside the extraction technical holding time of 14 days, qualify detects as estimated (J) and non-detects as unusable (R).
- c. If TCLP/SPLP aqueous samples and TCLP/SPLP leachate samples are analyzed within the technical holding time of 7 days, detects and non-detects should not be qualified.
- d. If TCLP/SPLP aqueous samples and TCLP/SPLP leachate samples are analyzed outside of the technical holding time of 7 days, qualify detects as estimated (J) and non-detects as unusable (R).

Table 1. Holding Time Actions for Low/Medium Volatile Analyses - Summary

		L		Action		
Matrix	Preserved	Criteria	Detected Associated Compounds	Non-Detected Associated Compounds		
	No	≤ 7 days	Noo	ualification		
Vancons	No	> 7 days	J	R		
Aqueous	Yes	≤ 14 days	Noc	ualification		
	Yes	> 14 days	J	R		
Non Aguaga	No	≤ 14 days	J	Professional judgment, UJ or R		
Non-Aqueous	Yes	≤ 14 days	Noc	alification		
	Yes/No	> 14 days	J	R		
TCLP/SPLP	Yes	≤ 14 days	No c	ualitication		
TCLP/SPLP	No	> 14 days	J	R		

TCLP/SPLP	ZHE performed within the 14-day technical holding time	No qu	alification
TCLP/SPLP	ZHE performed outside the 14-day technical holding time	J	R
TCLP/SPLP aqueous & TCLP/SPLP leachate	Analyzed within 7 days	No qu	alification
TCLP/SPLP aqueous & TCLP/SPLP leachate	Analyzed outside 7 days	Ţ	R
Sample tempera upon receipt at t	ture outside 4°C ± 2°C the laboratory	Use profess	ional judgment
Holding times g	rossly exceeded	J	R

All criteria were metX	
Cnteria were not met see below	

GC/MS TUNING

The assessment of the tuning results is to determine if the sample instrumentation is within the standard tuning QC limits

_X__ The BFB performance results were reviewed and found to be within the specified criteria.

__X___BFB tuning was performed for every 12 hours of sample analysis.

NOTES: All mass spectrometer instrument conditions must be identical to those used during the sample analysis. Background subtraction actions resulting in spectral distortions for the sole purpose of meeting the method specifications are contrary to the Quality Assurance (QA) objectives, and are therefore unacceptable.

NOTES: No data should be qualified based on BFB failure. Instances of this should be noted in the narrative.

All ion abundance ratios must be normalized to m/z 95, the nominal base peak, even though the ion abundance of m/z 174 may be up to 120% that of m/z 95.

Actions:

If samples are analyzed without a preceding valid instrument performance check, qualify all data in those samples as unusable (R).

If ion abundance criteria are not met, professional judgment may be applied to determine to what extent the data may be utilized. When applying professional judgment to this topic, the most important factors to consider are the empirical results that are relatively insensitive to location on the chromatographic profile and the type of instrumentation. Therefore, the critical ion abundance criteria for BFB are the m/z 95/96, 174/175, 174/176, and 176/177 ratios. The relative abundances of m/z 50 and 75 are of lower importance. This issue is more critical for Tentatively Identified Compounds (TICs) than for target analytes.

Note: State in the Data Review Narrative, decisions to use analytical data associated with BFB instrument performance checks not meeting contract requirements.

Note: Verify that that instrument instrument performance check criteria were achieved using techniques described in Low/Medium Volatiles Organic Analysis, Section II.D.5 of the SOM02.2 NFG, obtain additional information on the instrument performance checks. Make sure that background subtraction was performed from the BFB peak and not from background subtracting from the solvent front or from another region of the chromatogram.

	al judgment to determine who mass calibration compound.	ether associated data should be o	qualified based on the
List	the	samples	affected:
<u></u> .			
lf mass calibrati	on is in error, all associated o	tata are rejected	

All criteria were metX
Critena were not met
and/or see below

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:04/25/16	03/15/16
Dates of continuing (initial) calibration:04/25/16	03/15/16
Dates of continuing calibration:05/05/16	05/06/16
Date of ending calibration verification:05/05/16	05/05/16
Instrument ID numbers:GCMSY	GCMSJ
Matrix/Level:Aqueous/low	Aqueous/low

DATE		CRITERIA OUT RFs, %RSD, <u>%D</u> , r	COMPOUND	SAMPLES AFFECTED
GCMSY				
04/25/16	icc1133-4	-21.3	1,2,4-trichlorobenzene*	FA33668-6; -8; - 8MS/8MSD; FA33661- 1; -1MS/1MSD (QC sample)
	 			
				72

Note: Initial calibration, initial calibration verification, and continuing calibration verification within the validation guidance document required criteria. 1,2,4-trichlorobenzen %D was outside the method performance criteria but within the guidance document criteria. No action taken on affected samples. Closing calibration check verification included in data package.

Criteria

The analyte calibration criteria in the following Table must be obtained. Analytes not meeting the criteria are qualified.

A separate worksheet should be filled for each initial curve

Initial Calibration - Table 2. RRF, %RSD, and %D Acceptance Criteria for Initial Calibration and CCV for Low/Medium Volatile Analysis

41	Minimum	Maximum	Opening	Closing
Analyte	RRF	%RSD	Maximum %D1	Maximum %D
Dichlorodifluoromethane	0.010	25,0	±40.0	=50.0
Chloromethane	0.010	20.0	±30.0	=50.0
Vinyl chloride	0.010	20,0	±25.0	=50.0
Bromomethane	0.010	40.0	±30.0	=50.0
Chloroethane	0.010	40.0	±25.0	=50.0
Trichlorofluoromethane	0.010	40.0	±30.0	=50.0
1.1-Dichloroethene	0.060	20.0	±20.0	=25.0
1.1.2-Trichloro-1,2,2-trifluoroethane	0.050	25.0	±25.0	=50.0
Acetone	0.010	40.0	±40.0	=50.0
Carbon disulfide	0.100	20.0	±25.0	=25.0
Methyl acetate	0.010	40.0	±40.0	=50.0
Methylene chloride	0.010	40.0	±30.0	±50.0
trans-1.2-Dichloroethene	0.100	20.0	±20,0	±25.0
Methyl tert-butyl ether	0.100	40.0	±25.0	=50.0
1,1-Dichloroethane	0.300	20.0	±20.0	=25.0
cis-1.2-Dichloroethene	0.200	20.0	±20.0	=25.0
2-Butanone	0.010	40.0	±40.0	=50.0
Bromochloromethane	0.100	20.0	±20.0	=25.0
Chloroform	0.300	20.0	±20,0	=25.0
1.1.1-Trichloroethane	0.050	20.0	±25.0	±25.0
Cyclohexane	010.0	40.0	±25.0	±50.0
Carbon tetrachloride	0.100	20.0	±25.0	=25.0
Benzene	0.200	20.0	±20.0	=25.0
1.2-Dichloroethane	0.070	20.0	±20.0	=25.0
Trichloroethene	0.200	20.0	±20.0	=25.0
Methylcyclohexane	0.050	40.0	±25.0	=50.0
1.2-Dichloropropane	0.200	20.0	±20.0	=25.0
Bromodichloromethane	0.300	20.0	±20.0	=25.0
cis-1.3-Dichloropropene	0.300	20.0	±20.0	=25.0
4-Methyl-2-pentanone	0.030	25,0	±30.0	=50.0
Toluene	0.300	20.0	±20.0	=25.0
trans-1.3-Dichloropropene	0.200	20.0	±20,0	=25.0
1.1.2-Trichloroethane	0.200	20.0	±20,0	=25.0
Tetrachloroethene	0.100	20.0	±20.0	=25.0
2-Hexanone	0.010	40.0	±40.0	=50.0
Dibromochloromethane	0.200	20.0	±20.0	=25.0
1.2-Dibromoethane	0.200	20.0	±20.0	±25.0
Chlorobenzene	0.400	20.0	±20.0	=25.0
Ethylbenzene	0.400	20.0	±20.0	±25.0

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Closing Maximum
m.p-Xylene	0.200	20.0	±20.0	=25.0
o-Xylene	0.200	20.0	±20.0	±25.0
Styrene	0.200	20.0	±20.0	±25.0
Bromoform	001.0	20.0	±25.0	=50.0
Isopropylbenzene	0.400	20.0	±25.0	±25.0
1.1.2.2-Tetrachloroethane	0.200	20.0	±25.0	±25.0
1.3-Dichlorobenzene	0.500	20.0	±20.0	±25.0
1.4-Dichlorobenzene	0.600	20.0	±20.0	=25.0
1.2-Dichlorobenzene	0.600	20.0	±20.0	=25.0
1.2-Dibromo-3-chloropropane	0.010	25.0	±30.0	=50.0
1.2.4-Trichlorobenzene	0.400	20.0	±30.0	=50.0
1.2.3-Trichlorobenzene	0,400	25.0	±30.0	±50.0
Deuterated Monitoring Compound				
Vinyl chloride-di	0.010	20.0	±30.0	±50.0
Chloroethane-ds	0.010	40.0	±30.0	±50.0
1.1-Dichloroethene-d2	0.050	20.0	±25.0	=25.0
2-Butanone-ds	0.010	40.0	±40.0	±50.0
Chloroform-d	0.300	20.0	±20.0	±25.0
1.2-Dichloroethane-d+	0.060	20.0	±25.0	±25.0
Benzene-do	0.300	20.0	±20.0	±25.0
1.2-Dichloropropane-do	0.200	20.0	±20.0	±25.0
Toluene-ds	0.300	20.0	±20.0	#25.0
trans-1.3-Dichloropropene-d4	0.200	20.0	±20.0	=25.0
2-Hexanone-ds	0.010	40.0	±40.0	±50.0
1.1.2.2-Tetrachloroethane-da	0.200	20.0	±25.0	=25.0
1.2-Dichlorobenzene-d:	0.400	20.0	±20.0	±25.0

¹ If a closing CCV is acting as an opening CCV, all target analytes and DMCs must meet the requirements for an opening CCV.

Actions:

- 1. If any volatile target compound has an RRF value less than the minimum in the table, use professional judgment for detects, based on mass spectral identification, to qualify the data as estimated (J+ or R).
 - a. If any volatile target compound has an RRF value less than the minimum criterion, qualify non-detected compounds as unusable (R).
 - b. If any of the volatile target compounds listed in the Table has %RSD greater than the criteria, qualify detects as estimated (J), and non-detected compounds using professional judgment.
 - c. If the volatile target compounds meet the acceptance criteria for RRF and the %RSD, no qualification of the data is necessary.

- d. No qualification of the data is necessary on the DMC RRF and %RSD data alone. Use professional judgment and follow the guidelines in Action 2 to evaluate the DMC RRF and %RSD data in conjunction with the DMC recoveries to determine the need for qualification of data.
- 2. At the reviewer's discretion, and based on the project-specific Data Quality Objectives (DQOs), a more in-depth review may be considered using the following guidelines:
 - a. If any volatile target compound has a %RSD greater than the maximum criterion in the Table, and if eliminating either the high or the low-point of the curve does not restore the %RSD to less than or equal to the required maximum:
 - i. Qualify detects for that compound(s) as estimated (J).
 - ii. Qualify non-detected volatile target compounds using professional judgment.
 - b. If the high-point of the curve is outside of the linearity criteria (e.g., due to saturation):
 - i. Qualify detects outside of the linear portion of the curve as estimated (J).
 - ii. No qualifiers are required for detects in the linear portion of the curve.
 - iii. No qualifiers are required for volatile target compounds that were not detected.
 - c. If the low-point of the curve is outside of the linearity criteria:
 - i. Qualify low-level detects in the area of non-linearity as estimated (J).
 - ii. No qualifiers are required for detects in the linear portion of the curve.
 - iii. For non-detected volatile compounds, use the lowest point of the linear portion of the curve to determine the new quantitation limit.

Note: If the laboratory has failed to provide adequate calibration information, inform the Region's designated representative to contact the laboratory and request the necessary information. If the information is not available, the reviewer must use professional judgment to assess the data.

State in the Data Review Narrative, if possible, the potential effects on the data due to calibration criteria exceedance.

Note, for the Laboratory COR action, if calibration criteria are grossly exceeded.

Table. Initial Calibration Actions for Low/Medium Volatile Analysis – Summary

Criteria	Action		
CHICHE	Detect	Non-detect	
Initial Calibration not performed at specified frequency and sequence	Use professional judgment R	Use professional judgment R	
Initial Calibration not performed at the specified concentrations	J	UJ	
RRF < Minimum RRF in Table for target analyte	Use professional judgment J÷ or R	R	
RRF > Minimum RRF in Table for target analyte	No qualification	No qualification	
%RSD > Maximum %RSD in Table for target analyte	J	Use professional judgment	
%RSD ≤ Maximum %RSD in Table for target analyte	No qualification	No qualification	

All criteria were met _	X
Criteria were not met	
and/or see below	

Continuing Calibration Verification (CCV)

NOTE: Verify that the CCV was run at the required frequency (an opening and closing CCV must be run within 12-hour period) and the CCV was compared to the correct initial calibration. If the mid-point standard from the initial calibration is used as an opening CCV, verify that the result (RRF) of the mid-point standard was compared to the average RRF from the correct initial calibration.

The closing CCV used to bracket the end of a 12-hour analytical sequence may be used as the opening CCV for the new 12-hour analytical sequence, provided that all the technical acceptance criteria are met for an opening CCV (see criteria show before in the Table). If the closing CCV does not meet the technical acceptance criteria for an opening CCV, then a BFB tune followed by an opening CCV is required and the next 12-hour time period begins with the BFB tune.

All DMCs must meet RRF criteria. No qualification of the data is necessary on the DMCs RRF and %RSD/%D data alone. However, use professional judgment to evaluate the DMC and %RSD/%D data in conjunction with the DMC recoveries to determine the need of qualification the data.

Action:

- 1. If a CCV (opening and closing) was not run at the appropriate frequency, qualify data using professional judgment.
- 2. Qualify all volatile target compounds in Table shown before using the following criteria:
 - a. For an opening CCV, if any volatile target compound has an RRF value less than the minimum criterion, use professional judgment for detects, based on mass spectral identification, to qualify the data as estimated (J) and qualify non-detected compounds as unusable (R).
 - b. For a closing CCV, if any volatile target compound has an RRF value less than the criteria, use professional judgment for detects based on mass spectral identification to qualify the data as estimated (J), and qualify non-detected compounds as unusable (R).
 - c. For an opening CCV, if the Percent Difference value for any of the volatile target compounds is outside the limits in calibration criteria Table shown before, qualify detects as estimated (J) and non-detected compounds as estimated (UJ).
 - d. For a closing CCV, if the Percent Difference value for any volatile target compound is outside the limits in calibration criteria table, qualify detects as estimated (J) and non-detected compounds as estimated (UJ).
 - e. If the volatile target compounds meet the acceptable criteria for RRF and the Percent Difference, no qualification of the data is necessary.

f. No qualification of the data is necessary on the DMC RRF and the Percent Difference data alone. Use professional judgment to evaluate the DMC RRF and Percent Difference data in conjunction with the DMC recoveries to determine the need for qualification of data.

Notes: If the laboratory has failed to provide adequate calibration information, inform the Region's designated representative to contact the laboratory and request the necessary information. If the information is not available, the reviewer must use professional judgment to assess the data.

State in the Data Review Narrative, if possible, the potential effects on the data due to calibration criteria exceedance.

Note, for Contract Laboratory COR action, if calibration criteria are grossly exceeded.

Table. Continuing Calibration Actions for Low/Medium Volatile Analysis - Summary

Criteria for Opening	Criteria for	Action		
CCV	Closing CCV	Detect	Non-detect	
CCV not performed at required frequency	CCV not performed at required frequency	Use professional judgment R	Use professional judgment R	
CCV not performed at specified concentration	CCV not performed at specified concentration	Use professional judgment	Use professional judgment	
RRF < Minimum RRF in Table 2 for target analyte	RRF < Minimum RRF in Table for target analyte	Use professional judgment J or R	R	
RRF = Minimum RRF in Table 2 for target analyte	RRF ≥ Minimum RRF in Table – for target analyte	No qualification	No qualification	
° aD outside the Opening Maximum ° aD limits in Table 2 for target analyte	%D outside the Closing Maximum %D limits in Table for target analyte	J	ប្រ	
OD within the inclusive Opening Maximum OD limits in Table 2 for target analyte	%D within the inclusive Closing Maximum %D limits in Table—for target analyte	No qualification	No qualification	

All criteria were metX Criteria were not met and/or see below
existence and magnitude of nly to blanks associated with ems with any blanks exist, all ne whether or not there is an ated occurrence not affecting
must be treated separately.
ceed its Contract Required tone, and 2-Butanone). TIC /L for TCLP leachate) and ≤
technical acceptance criteria
CONCENTRATION UNITS
s data in a similar fashion as

BLANK ANALYSIS RESULTS (Sections 1 & 2)

LAB ID

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

The concentration of a target analyte in any blank must not exceed its Contract Required Quantitation Limit (CRQL) (2x CRQLs for Methylene chloride, Acetone, and 2-Butanone). TIC concentration in any blanks must be $\leq 5.0 \,\mu\text{g/L}$ for water (0.0050 mg/L for TCLP leachate) and $\leq 5.0 \,\mu\text{g/kg}$ for soil matrices.

Laboratory blanks

DATE

The method blank, like any other sample in the SDG, must meet the technical acceptance criteria for sample analysis.

COMPOUND

LEVEL/

ANALYZED		MATRIX		UNITS
No_target_ana	alyte_detected_i	n_method_blank	S	
Field/ <u>Equipme</u>	nt/Trip blank			
If field or trip blathe method blar		t, the data review	er should evaluate this	data in a similar fashion as
DATE Analyzed	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_No_target_ana _No_field_blam	alytes_detected_ k_analyzed_incl	_in_the_trip/equip uded_in_this_da	ment_blanks_analyzed ta_package	_for_this_data_package
		ja -		

All criteria were metX
Criteria were not met
and/or see below

BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Note:

All fields blank results associated with a particular group of samples (may exceed one per case) must be used to qualify data. Trip blanks are used to qualify only those samples with which they were shipped. Blanks may not be qualified because of contamination in another blank. Field blanks and trip blanks must be qualified for system monitoring compounds, instrument performance criteria, and spectral or calibration QC problems.

Samples taken from a drinking water tap do not have associated field blanks.

When applied as described in the Table below, the contaminant concentration in the blank is multiplied by the sample dilution factor.

Table. Blank and TCLP/SPLP LEB Actions for Low/Medium Volatile Analysis

Blank Type	Blank Result	Sample Result	Action for Samples
	Detects	Not detected	No qualification required
	< CRQL *	< CRQL*	Report CRQL value with a U
	CKQL	≥ CRQL*	No qualification required
Method,		< CRQL*	Report CRQL value with a U
Storage, Field.		≥ CRQL* and ≤	Report blank value for sample
Trip,	> CRQL *	blank concentration	concentration with a U
TCLP/SPLP LEB.		≥ CRQL* and > blank concentration	No qualification required
Instrument**	= CRQL*	≤ CRQL*	Report CRQL value with a U
		> CRQL*	No qualification required
	Gross contamination	Detects	Report blank value for sample concentration with a U

^{* 2}x the CRQL for methylene chloride, 2-butanone and acetone.

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

^{**} Qualifications based on instrument blank results affect only the sample analyzed immediately after the sample that has target compounds that exceed the calibration range or non-target compounds that exceed 100 µg/L.

Notes:

High and low level blanks must be treated separately Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
					1000
*					
-		1			

All criteria were metX
Criteria were not met
and/or see below

DEUTERATED MONITORING COMPOUNDS (DMCs)

Laboratory performance of individual samples is established by evaluation of surrogate spike (DMCs) recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

Table. Volatile Deuterated Monitoring Compounds (DMCs) and Recovery Limits

DMC	%R for Water Sample	%R for Soil Sample
Vinyl chloride-d3	60-135	30-150
Chloroethane-d5	70-130	30-150
1.1-Dichloroethene-d2	60-125	45-110
2-Butanone-d5	40-130	20-135
Chloroform-d	70-125	40-150
1.2-Dichloroethane-d4	70-125	70-130
Benzene-d6	70-125	20-135
1.2-Dichloropropane-d6	70-120	70-120
Toluene-d8	80-120	30-130
trans-1.3-	60-125	30-135
Dichloropropene-d4		
2-Hexanone-d5	45-130	20-135
1.1.2.2-	65-120	45-120
Tetrachloroethane-d2		
1.2-Dichlorobenzene-d4	80-120	75-120

NOTE: The recovery limits for any of the compounds listed in the above Table may be expanded at any time during the period of performance if the United States Environmental Protection Agency (EPA) determines that the limits are too restrictive.

Action:

Are recoveries for DMCs in volatile samples and blanks must be within the limits specified in the Table above.

Yes? or No?

NOTE: The recovery limits for any of the compounds listed in the Table above may be expanded at any time during the period of performance if USEPA determines that the limits are too restrictive.

List the DMCs that may fail to meet the recovery limits

Sample ID

Date

DMCs

% Recovery

Action

DMCs recoveries within the required limits. Other non-deuterated surrogates added to the samples within laboratory control limits.

Note: Any sample which has more than 3 DMCs outside the limits must be reanalyzed.

Action:

- 1. For any recovery greater than the upper acceptance limit:
 - a. Qualify detected associated volatile target compounds as estimated high (J+).
 - b. Do not qualify non-detected associated volatile target compounds.
- 2. For any recovery greater than or equal to 10%, and less than the lower acceptance limit:
 - Qualify detected associated volatile target compounds as estimated low (J-).
 - b. Qualify non-detected associated volatile target compounds as estimated (UJ).
- 3. For any recovery less than 10%:
 - a. Qualify detected associated volatile target compounds as estimated low (J-).
 - b. Qualify non-detected associated volatile target compounds as unusable (R).
- 4. For any recovery within acceptance limits, no qualification of the data is necessary.
- In the special case of a blank analysis having DMCs out of specification, the reviewer must give special consideration to the validity of associated sample data. The basic concern is whether the blank problems represent an isolated problem with the blank alone, or whether there is a fundamental problem with the analytical process. For example, if one or more samples in the batch show acceptable DMC recoveries, the reviewer may choose to consider the blank problem to be an isolated occurrence. However, even if this judgment allows some use of the affected data, note analytical problems for Contract Laboratory COR action.
- 6. If more than three DMCs are outside of the recovery limits for Low/Medium volatiles analysis and the sample was not reanalyzed, note under Contract Problems/Non-Compliance.

Table. Deuterated Monitoring Compound (DMC) Recovery Actions for Low/Medium Volatiles Analyses – Summary

	Action			
Criteria	Detect Associated Compounds	Non-detected Associated Compounds		
°oR < 10°a	J-	R		
1000 ≤ 00R < Lower Acceptance Limit	J-	UJ		
Lower Acceptance Limit ≤ % R ⊆ Upper Acceptance Limit	No qualification	No qualification		
%R > Upper Acceptance Limit	J+	No qualification		

TABLE. VOLATILE DEUTERATED MONITORING COMPOUNDS (DMCs) AND THE ASSOCIATED TARGET COMPOUNDS

Vinyl chloride-d3 (DMC-1)	Chloroethane-ds (DMC-2)	1,1-Dichloroethene-d2 (DMC-3)
Vinyl chloride	Dichlorodifhioromethane	trans-1,2-Dichloroethene
	Chloromethane	cis-1.2-Dichloroethene
	Bromomethane	1.1-Dichloroethene
	Chloroethane	
	Carbon disulfide	
2-Butanone-ds (DMC-4)	Chloroform-d (DMC-5)	1,2-Dichloroethane-da (DMC-6)
Acetone	1.1-Dichloroethane	Trichlorofluoromethane
2-Butanone	Bromochloromethane	1,1,2-Trichloro-1,2,2-trifluoroethane
	Chloroform	Methyl acetate
	Dibromochloromethane	Methylene chloride
	Bromoform	Methyl-tert-buryl ether
		1.1,1-Trichloroethane
		Carbon tetrachloride
		1.2-Dibromoethane
		1.2-Dichloroethane
Benzene-de (DMC-7)	1,2-Dichloropropane-da (DMC-8)	Toluene-ds (DMC-9)
Benzene	Cyclohexane	Trichloroethene
	Methylcyclohexane	Toluene
	1,2-Dichloropropane	Tetrachloroethene
	Bromodichloromethane	Ethylbenzene
	•	o-Xylene
		m.p-Xylene
		Styrene
		Isopropylbenzene
trans-1,3-Dichloropropene-da (DMC-10)	2-Hexanone-ds (DMC-11)	1,1,2,2-Tetrachloroethane-d: (DMC-12)
cis-1,3-Dichloropropene	4-Methyl-2-pentanone	1.1,2.2Tetrachloroethane
trans-1.3-Dichloropropene	2-Hexanone	1,2-Dibromo-3-chloropropane
1.1.2-Trichloroethane	,	
1,2-Dichlorobenzene-d4		
(DMC-13)	Α.	
Chlorobenzene		
1.3-Dichlorobenzene		
1,4-Dichlorobenzene		
1.2-Dichlorobenzene		
1.2.4-Trichlorobenzene		¥2
1.2.3-Trichlorobenzene		

All criteria were metX
Criteria were not met
and/or see below

MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

NOTES:

Data for MS and MSDs will not be present unless requested by the

Region.

Notify the Contract Laboratory COR if a field or trip blank was used for the

MS and MSD.

For a Matrix Spike that does not meet criteria, apply the action to only the field sample used to prepare the Matrix Spike sample. If it is clearly stated in the data validation materials that the samples were taken through incremental sampling or some other method guaranteeing the homogeneity of the sample group, then the entire sample group may be qualified.

MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

List the %Rs, RPD of the compounds which do not meet the criteria.

	.33668-8MS/8MSD .33668-1MS/1MSD				oil queous	
MS OR MSD FA33668-8MS/8	COMPOUND BMSD	% R	RPD	QC LIMITS	ACTION	
	Tetrachloroethylene_	147/174_	%	79130	No_qualification needed;_analyte_not detected_in_sample_	_
FA33668-1MS/ _MSD	1MSD _Tert-Butyi_Alcohol	133_%		63129	No_qualification needed;_analyte_not	
	· · · · · · · · · · · · · · · · · · ·				detected_in_sample	

* If QC limits are not available, use limits of 70 – 130 %.

^{*} QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.

Actions:

 No qualification of the data is necessary on MS and MSD data alone. However, using professional judgment, the validator may use the MS and MSD results in conjunction with other QC criteria and determine the need for some qualification of the data.

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J).

If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

All criteria were metX
Criteria were not met
and/or see below

LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

LCS Recoveries Criteria

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? <u>Yes</u> or No. If no make note in data review memo. – LCS solid concentration lower than matrix spike concentration.

List the %R of compounds which do not meet the criteria

Recoveries (blank spike	e)_within_laboratory_control_limi	ts except for the	e following:
	trans-1,2-dichloroethylene		

Note: Analyte not detected in affected sample, results are accepted.

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? Yes or No.

If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

		All criteria were metX Criteria were not met and/or see below
IX.	FIELD/LABORATORY DUPLICATE PRECISION	
	Sample IDs:	Matrix:

Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information.

NOTE: In the absence of QAPP guidance for validating data from field duplicates, the following action will be taken.

Identify which samples within the data package are field duplicates. Estimate the relative percent difference (RPD) between the values for each compound. Use professional judgment to note large RPDs (> 50%) in the narrative.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
No field/lat			for this data package. Maired criteria, < 50 % for		

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions are suggested based on professional judgment:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

All criteria were metX
Criteria were not met
and/or see below

X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

DATE SAMPLE ID IS OUT IS AREA ACCEPTABLE ACTION RANGE

Internal standard area counts within the required criteria.

Action:

- 1. If an internal standard area count for a sample or blank is greater than 200.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration) (see Table below):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated low (J-).
 - b. Do not qualify non-detected associated compounds.
- 2. If an internal standard area count for a sample or blank is less than 20.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated high (J+).
 - b. Qualify non-detected associated compounds as unusable (R).
- 3. If an internal standard area count for a sample or blank is greater than or equal to 20.0%, and less than or equal to 200% of the area for the associated standard opening CCV or mid-point standard from initial calibration, no qualification of the data is necessary.
- 4. If an internal standard RT varies by more than 30.0 seconds: Examine the chromatographic profile for that sample to determine if any false positives or negatives exist. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for that sample fraction. Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met.
- 5. If an internal standard RT varies by less than or equal to 30.0 seconds, no qualification of the data is necessary.

Note: Inform the Contract Laboratory Program Project Officer (CLP PO) if the internal standard performance criteria are grossly exceeded. Note in the Data Review Narrative potential effects on the data resulting from unacceptable internal standard performance.

- 6. If required internal standard compounds are not added to a sample or blank, qualify detects and non-detects as unusable (R).
- 7. If the required internal standard compound is not analyzed at the specified concentration in a sample or blank, use professional judgment to qualify detects and non-detects.

Table. Internal Standard Actions for Low/Medium Volatiles Analyses - Summary

	Action	
Criteri <mark>a</mark>	Detected Associated Compounds*	Non-detected Associated Compounds*
Area counts > 200% of 12-hour standard (opening CCV or mid-point standard from initial calibration)	J-	No qualification
Area counts < 20% of 12-hour standard (opening CCV or mid-point standard from initial calibration)	J+	R
Area counts ≥ 50% but ≤ 200% of 12-hour standard (opening CCV or mid-point standard from initial calibration)		
RT difference > 30.0 seconds between samples and 12-hour standard (opening CCV or mid-point standard from initial calibration)	R **	R
RT difference ≤ 30.0 seconds between samples and 12-hour standard (opening CCV or mid-point standard from initial calibration)	No qualification	

^{*} For volatile compounds associated to each internal standard, see TABLE - VOLATILE TARGET ANALYTES, DEUTERATED MONITORING COMPOUNDS WITH ASSOCIATED INTERNAL STANDARDS FOR QUANTITATION in SOM02.2, Exhibit D, available at: http://www.epa.gov/superfund/programs/clp/download/som/som22d.pdf

^{**} Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met.

		All criteria were metX Criteria were not met and/or see below
TARGET COM	MPOUND IDENTIFICATION	
Criteria:		
	Γ (opening Continuing Calibration Verificat	ompounds within ±0.06 RRT units of the ion (CCV) or mid-point standard from the <u>Yes</u> ? or No?
List compound	ds not meeting the criteria described above	<u>.</u>
Sample ID	Compounds	Actions
 		
•	nust match according to the following criterial All ions present in the standard mass such that the present in the sample spectra from the relative intensities of these ions standard and sample spectra (e.g., for standard spectrum, the corresponding 30-70%). Ions present at greater than 10% in the	pectrum at a relative intensity greater than
List compoun	ds not meeting the criteria described above	3*
Sample ID	Compounds	Actions

Action:

- 1. The application of qualitative criteria for GC/MS analysis of target compounds requires professional judgment. It is up to the reviewer's discretion to obtain additional information from the laboratory. If it is determined that incorrect identifications were made, qualify all such data as unusable (R).
- 2. Use professional judgment to qualify the data if it is determined that cross-contamination has occurred.
- 3. Note in the Data Review Narrative any changes made to the reported compounds or concerns regarding target compound identifications. Note, for Contract Laboratory COR action, the necessity for numerous or significant changes.

TENTATIVELY IDENTIFIED COMPOUNDS (TICS)

NOTE: Tentatively identified compounds should only be evaluated when requested by a party from outside of the Hazardous Waste Support Section (HWSS).

Sample ID	Compound	Sample ID	Compound

Action:

- 1. Qualify all TiC results for which there is presumptive evidence of a match (e.g. greater than or equal to 85% match) as tentatively identified (NJ), with approximated concentrations. TICs labeled "unknown" are qualified as estimated (J).
- 2. General actions related to the review of TIC results are as follows:
 - a. If it is determined that a tentative identification of a non-target compound is unacceptable, change the tentative identification to "unknown" or another appropriate identification, and qualify the result as estimated (J).
 - b. If all contractually-required peaks were not library searched and quantitated, the Region's designated representative may request these data from the laboratory.
- 3. In deciding whether a library search result for a TIC represents a reasonable identification, use professional judgment. If there is more than one possible match, report the result as "either compound X or compound Y". If there is a lack of isomer specificity, change the TIC result to a nonspecific isomer result (e.g., 1,3,5-trimethyl benzene to trimethyl benzene

- isomer) or to a compound class (e.g., 2-methyl, 3-ethyl benzene to a substituted aromatic compound).
- 4. The reviewer may elect to report all similar compounds as a total (e.g., all alkanes may be summarized and reported as total hydrocarbons).
- 5. Target compounds from other fractions and suspected laboratory contaminants should be marked as "non-reportable".
- 6. Other Case factors may influence TIC judgments. If a sample TIC match is poor, but other samples have a TIC with a valid library match, similar RRT, and the same ions, infer identification information from the other sample TIC results.
- 7. Note in the Data Review Narrative any changes made to the reported data or any concerns regarding TIC identifications.
- 8. Note, for Contract Laboratory COR action, failure to properly evaluate and report TICs

All criteria were metX
Criteria were not met
and/or see below

SAMPLE QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLS)

Action:

- 1. If any discrepancies are found, the Region's designated representative may contact the laboratory to obtain additional information that could resolve any differences. If a discrepancy remains unresolved, the reviewer must use professional judgment to decide which value is the most accurate. Under these circumstances, the reviewer may determine that qualification of data is warranted. Note in the Data Review Narrative a description of the reasons for data qualification and the qualification that is applied to the data.
- 2. For non-aqueous samples, in the percent moisture is less than 70.0%, no qualification of the data is necessary. If the percent moisture is greater than or equal to 70.0% and less than 90.0%, qualify detects as estimated (J) and non-detects as approximated (UJ). If the percent moisture is greater than or equal to 90.0%, qualify detects as estimated (J) and non-detects as unusable (R) (see Table below).
- 3. Note, for Contract Laboratory COR action, numerous or significant failures to accurately quantify the target compounds or to properly evaluate and adjust CRQLs.
- 4. Results between MDL and CRQL should be qualified as estimated "J".
- 5. Results < MDL should be reported at the CRQL and qualified "U". MDLs themselves are not reported.

Table. Percent Moisture Actions for Low/Medium Volatiles Analysis for Non-Aqueous Samples

Criteria	Action		
	Detected Associated Compounds	Non-detected Associated Compounds	
% Moisture < 70.0	No qualification		
70.0 < % Moisture < 90.0	J	UJ	
% Moisture > 90.0	J	R	

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

Sample ID

FA33668-3

Freon 113

RF = 0.250

[] = (47635)(50)/(0.250)(1090332) = 8.74 ppb Ok

B.	Percent Solids			
	List samples which have ≥ 70 % solids			

All criteria were metX
Criteria were not met
and/or see below

QUANTITATION LIMITS

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION
	<u> </u>	1
	p	
		1
		U G - 3 ABRES
6		

		All criteria were metX Criteria were not met and/or see below
OTHER ISSUES		BIRDON SCE DOLON
A. System Perfo	mance	
List samples qualified	based on the degradation of system p	erformance during simple analysis:
Sample ID	Comments	Actions
_No_degradation_of_	system_performance_observed	
Action:		35
degraded during sam		ermined that system performance has poratory Program COR any action as a ntly affected the data.
B. Overall Asses	sment of Data	
List samples qualified	based on other issues:	
Sample ID	Comments	Actions
	s_observed_that_require_qualification ecission_purposes	_of_the_dataResults_are_valid_and_

Action:

- 1. Use professional judgment to determine if there is any need to qualify data which were not qualified based on the Quality Control (QC) criteria previously discussed.
- Write a brief narrative to give the user an indication of the analytical limitations of the data. Inform the Contract Laboratory COR the action, any inconsistency of the data with the Sample Delivery Group (SDG) Narrative. If sufficient information on the intended use and required quality of the data is available, the reviewer should include their assessment of the usability of the data within the given context. This may be used as part of a formal Data Quality Assessment (DQA).